Loading…

The joint effect of temperature and host species induce complex genotype-by-environment interactions in the larval parasitoid of Drosophila, Leptopilina heterotoma (Hymenoptera: Figitidae)

Phenotypic plasticity and genotype-by-environment interactions are usually studied by testing environmental factors separately. However, several environmental factors may vary simultaneously across the geographic range of a species, and thus interact to drive phenotypic and genotypic evolution. Here...

Full description

Saved in:
Bibliographic Details
Published in:Oikos 2004-09, Vol.106 (3), p.451-456
Main Authors: Ris, Nicolas, Allemand, Roland, Fouillet, Pierre, Fleury, Frédéric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phenotypic plasticity and genotype-by-environment interactions are usually studied by testing environmental factors separately. However, several environmental factors may vary simultaneously across the geographic range of a species, and thus interact to drive phenotypic and genotypic evolution. Here, we address the question of the interaction between two environmental factors in the case of a koinobiont parasitoid of Drosophila, Leptopilina heterotoma (Hymenoptera: Figitidae). Using two allopatric parasitoid lines, we analysed the joint effect of developmental temperature and host species on two major fitness components (pre-imaginal survival and fecundity) of emerged parasitoids. Our results indicate that both environmental factors strongly interact to shape the parasitoid phenotype. Moreover, complex genotype-by-environment interactions appeared that can even invert the relative fitness of the two parasitoid lines.
ISSN:0030-1299
1600-0706
DOI:10.1111/j.0030-1299.2004.13274.x