Loading…

On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations

In this article, we are interested in the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations. In the superquadratic case, the third author has proved that these solutions can have only two different behaviors: either the solution of the evolu...

Full description

Saved in:
Bibliographic Details
Published in:Journal de mathématiques pures et appliquées 2010-11, Vol.94 (5), p.497-519
Main Authors: Barles, Guy, Porretta, Alessio, Tchamba, Thierry Tabet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3
cites cdi_FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3
container_end_page 519
container_issue 5
container_start_page 497
container_title Journal de mathématiques pures et appliquées
container_volume 94
creator Barles, Guy
Porretta, Alessio
Tchamba, Thierry Tabet
description In this article, we are interested in the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations. In the superquadratic case, the third author has proved that these solutions can have only two different behaviors: either the solution of the evolution equation converges to the solution of the associated stationary generalized Dirichlet problem (provided that it exists) or it behaves like − c t + φ ( x ) where c ⩾ 0 is a constant, often called the “ergodic constant” and φ is a solution of the so-called “ergodic problem”. In the present subquadratic case, we show that the situation is slightly more complicated: if the gradient-growth in the equation is like | D u | m with m > 3 / 2 , then analogous results hold as in the superquadratic case, at least if c > 0 . But, on the contrary, if m ⩽ 3 / 2 or c = 0 , then another different behavior appears since u ( x , t ) + c t can be unbounded from below where u is the solution of the subquadratic viscous Hamilton–Jacobi equation. Dans cet article, nous nous intéressons au comportement en temps grands des solutions du problème de Dirichlet pour des équations de type Hamilton–Jacobi visqueuses dans le cas sous-quadratique. Dans le cas sur-quadratique, le troisième auteur a prouvé que ces solutions ne peuvent avoir que deux comportements : ou bien la solution du problème d'évolution converge vers la solution du problème stationnaire associé (à condition qu'elle existe) ou bien elle se comporte comme − c t + φ ( x ) où c ⩾ 0 est une constante, souvent appelée “constante ergodique” et φ est la solution du “problème ergodique”. Dans le cas sous-quadratique, nous montrons que la situation est plus complexe : si le terme en gradient dans l'équation croît comme | D u | m avec m > 3 / 2 , alors le comportement est analogue au cas sur-quadratique, au moins si on a c > 0 . Au contraire, si m ⩽ 3 / 2 ou si c = 0 , alors un autre comportement apparait car, si u est la solution de l'équation Hamilton–Jacobi visqueuse, u ( x , t ) + c t peut être non minoré.
doi_str_mv 10.1016/j.matpur.2010.03.006
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00441975v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021782410000395</els_id><sourcerecordid>oai_HAL_hal_00441975v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3</originalsourceid><addsrcrecordid>eNp9kL9u2zAQhzWkQPOnb9CBS4cMdo4ULUtLgSBp4gYGsqQzcSRPMQ1JdEnKQLa8Q96wT1KqKjKGy4GH77vD_YriK4clB15d7Zc9psMYlgJyC8olQHVSnAIIvljXQn4uzmLcQ35NVZ0W4-PA0o5Yh-GZWHI9MU07PDofmG9Z9N2YnB_i9Jm4Wxec2XWU2CF43VHP2kzGUf8e0QZMzrCji8aPkW2wd13yw5_Xtwc0XjtGGfo37aL41GIX6cv_el78uvvxdLNZbB_vf95cbxdG1iItuF1bUVeWhAZr69LW1JiqROJQ61ULsjUcG6GbSkoBtqmt0FSasl5JLVqB5XlxOc_dYacOwfUYXpRHpzbXWzX1AKTkzXp15JmVM2uCjzFQ-y5wUFO0aq_maNUUrYIy21XWvs3aAaPBrg04GBffXVE2vFmtZea-zxzle4-OgorG0WDIukAmKevdx4v-AqXvliU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations</title><source>ScienceDirect Journals</source><creator>Barles, Guy ; Porretta, Alessio ; Tchamba, Thierry Tabet</creator><creatorcontrib>Barles, Guy ; Porretta, Alessio ; Tchamba, Thierry Tabet</creatorcontrib><description>In this article, we are interested in the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations. In the superquadratic case, the third author has proved that these solutions can have only two different behaviors: either the solution of the evolution equation converges to the solution of the associated stationary generalized Dirichlet problem (provided that it exists) or it behaves like − c t + φ ( x ) where c ⩾ 0 is a constant, often called the “ergodic constant” and φ is a solution of the so-called “ergodic problem”. In the present subquadratic case, we show that the situation is slightly more complicated: if the gradient-growth in the equation is like | D u | m with m &gt; 3 / 2 , then analogous results hold as in the superquadratic case, at least if c &gt; 0 . But, on the contrary, if m ⩽ 3 / 2 or c = 0 , then another different behavior appears since u ( x , t ) + c t can be unbounded from below where u is the solution of the subquadratic viscous Hamilton–Jacobi equation. Dans cet article, nous nous intéressons au comportement en temps grands des solutions du problème de Dirichlet pour des équations de type Hamilton–Jacobi visqueuses dans le cas sous-quadratique. Dans le cas sur-quadratique, le troisième auteur a prouvé que ces solutions ne peuvent avoir que deux comportements : ou bien la solution du problème d'évolution converge vers la solution du problème stationnaire associé (à condition qu'elle existe) ou bien elle se comporte comme − c t + φ ( x ) où c ⩾ 0 est une constante, souvent appelée “constante ergodique” et φ est la solution du “problème ergodique”. Dans le cas sous-quadratique, nous montrons que la situation est plus complexe : si le terme en gradient dans l'équation croît comme | D u | m avec m &gt; 3 / 2 , alors le comportement est analogue au cas sur-quadratique, au moins si on a c &gt; 0 . Au contraire, si m ⩽ 3 / 2 ou si c = 0 , alors un autre comportement apparait car, si u est la solution de l'équation Hamilton–Jacobi visqueuse, u ( x , t ) + c t peut être non minoré.</description><identifier>ISSN: 0021-7824</identifier><identifier>DOI: 10.1016/j.matpur.2010.03.006</identifier><identifier>CODEN: JMPAAM</identifier><language>eng</language><publisher>Kidlington: Elsevier SAS</publisher><subject>Analysis of PDEs ; Calculus of variations and optimal control ; Dirichlet problem ; Ergodic problem ; Exact sciences and technology ; General mathematics ; General, history and biography ; Large time behavior ; Mathematical analysis ; Mathematics ; Sciences and techniques of general use ; Subquadratic case ; Viscosity solutions ; Viscous Hamilton–Jacobi Equations</subject><ispartof>Journal de mathématiques pures et appliquées, 2010-11, Vol.94 (5), p.497-519</ispartof><rights>2010 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3</citedby><cites>FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3</cites><orcidid>0000-0001-9381-4676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23919574$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00441975$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barles, Guy</creatorcontrib><creatorcontrib>Porretta, Alessio</creatorcontrib><creatorcontrib>Tchamba, Thierry Tabet</creatorcontrib><title>On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations</title><title>Journal de mathématiques pures et appliquées</title><description>In this article, we are interested in the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations. In the superquadratic case, the third author has proved that these solutions can have only two different behaviors: either the solution of the evolution equation converges to the solution of the associated stationary generalized Dirichlet problem (provided that it exists) or it behaves like − c t + φ ( x ) where c ⩾ 0 is a constant, often called the “ergodic constant” and φ is a solution of the so-called “ergodic problem”. In the present subquadratic case, we show that the situation is slightly more complicated: if the gradient-growth in the equation is like | D u | m with m &gt; 3 / 2 , then analogous results hold as in the superquadratic case, at least if c &gt; 0 . But, on the contrary, if m ⩽ 3 / 2 or c = 0 , then another different behavior appears since u ( x , t ) + c t can be unbounded from below where u is the solution of the subquadratic viscous Hamilton–Jacobi equation. Dans cet article, nous nous intéressons au comportement en temps grands des solutions du problème de Dirichlet pour des équations de type Hamilton–Jacobi visqueuses dans le cas sous-quadratique. Dans le cas sur-quadratique, le troisième auteur a prouvé que ces solutions ne peuvent avoir que deux comportements : ou bien la solution du problème d'évolution converge vers la solution du problème stationnaire associé (à condition qu'elle existe) ou bien elle se comporte comme − c t + φ ( x ) où c ⩾ 0 est une constante, souvent appelée “constante ergodique” et φ est la solution du “problème ergodique”. Dans le cas sous-quadratique, nous montrons que la situation est plus complexe : si le terme en gradient dans l'équation croît comme | D u | m avec m &gt; 3 / 2 , alors le comportement est analogue au cas sur-quadratique, au moins si on a c &gt; 0 . Au contraire, si m ⩽ 3 / 2 ou si c = 0 , alors un autre comportement apparait car, si u est la solution de l'équation Hamilton–Jacobi visqueuse, u ( x , t ) + c t peut être non minoré.</description><subject>Analysis of PDEs</subject><subject>Calculus of variations and optimal control</subject><subject>Dirichlet problem</subject><subject>Ergodic problem</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Large time behavior</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Subquadratic case</subject><subject>Viscosity solutions</subject><subject>Viscous Hamilton–Jacobi Equations</subject><issn>0021-7824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kL9u2zAQhzWkQPOnb9CBS4cMdo4ULUtLgSBp4gYGsqQzcSRPMQ1JdEnKQLa8Q96wT1KqKjKGy4GH77vD_YriK4clB15d7Zc9psMYlgJyC8olQHVSnAIIvljXQn4uzmLcQ35NVZ0W4-PA0o5Yh-GZWHI9MU07PDofmG9Z9N2YnB_i9Jm4Wxec2XWU2CF43VHP2kzGUf8e0QZMzrCji8aPkW2wd13yw5_Xtwc0XjtGGfo37aL41GIX6cv_el78uvvxdLNZbB_vf95cbxdG1iItuF1bUVeWhAZr69LW1JiqROJQ61ULsjUcG6GbSkoBtqmt0FSasl5JLVqB5XlxOc_dYacOwfUYXpRHpzbXWzX1AKTkzXp15JmVM2uCjzFQ-y5wUFO0aq_maNUUrYIy21XWvs3aAaPBrg04GBffXVE2vFmtZea-zxzle4-OgorG0WDIukAmKevdx4v-AqXvliU</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Barles, Guy</creator><creator>Porretta, Alessio</creator><creator>Tchamba, Thierry Tabet</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9381-4676</orcidid></search><sort><creationdate>20101101</creationdate><title>On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations</title><author>Barles, Guy ; Porretta, Alessio ; Tchamba, Thierry Tabet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis of PDEs</topic><topic>Calculus of variations and optimal control</topic><topic>Dirichlet problem</topic><topic>Ergodic problem</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Large time behavior</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Subquadratic case</topic><topic>Viscosity solutions</topic><topic>Viscous Hamilton–Jacobi Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barles, Guy</creatorcontrib><creatorcontrib>Porretta, Alessio</creatorcontrib><creatorcontrib>Tchamba, Thierry Tabet</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal de mathématiques pures et appliquées</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barles, Guy</au><au>Porretta, Alessio</au><au>Tchamba, Thierry Tabet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations</atitle><jtitle>Journal de mathématiques pures et appliquées</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>94</volume><issue>5</issue><spage>497</spage><epage>519</epage><pages>497-519</pages><issn>0021-7824</issn><coden>JMPAAM</coden><abstract>In this article, we are interested in the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations. In the superquadratic case, the third author has proved that these solutions can have only two different behaviors: either the solution of the evolution equation converges to the solution of the associated stationary generalized Dirichlet problem (provided that it exists) or it behaves like − c t + φ ( x ) where c ⩾ 0 is a constant, often called the “ergodic constant” and φ is a solution of the so-called “ergodic problem”. In the present subquadratic case, we show that the situation is slightly more complicated: if the gradient-growth in the equation is like | D u | m with m &gt; 3 / 2 , then analogous results hold as in the superquadratic case, at least if c &gt; 0 . But, on the contrary, if m ⩽ 3 / 2 or c = 0 , then another different behavior appears since u ( x , t ) + c t can be unbounded from below where u is the solution of the subquadratic viscous Hamilton–Jacobi equation. Dans cet article, nous nous intéressons au comportement en temps grands des solutions du problème de Dirichlet pour des équations de type Hamilton–Jacobi visqueuses dans le cas sous-quadratique. Dans le cas sur-quadratique, le troisième auteur a prouvé que ces solutions ne peuvent avoir que deux comportements : ou bien la solution du problème d'évolution converge vers la solution du problème stationnaire associé (à condition qu'elle existe) ou bien elle se comporte comme − c t + φ ( x ) où c ⩾ 0 est une constante, souvent appelée “constante ergodique” et φ est la solution du “problème ergodique”. Dans le cas sous-quadratique, nous montrons que la situation est plus complexe : si le terme en gradient dans l'équation croît comme | D u | m avec m &gt; 3 / 2 , alors le comportement est analogue au cas sur-quadratique, au moins si on a c &gt; 0 . Au contraire, si m ⩽ 3 / 2 ou si c = 0 , alors un autre comportement apparait car, si u est la solution de l'équation Hamilton–Jacobi visqueuse, u ( x , t ) + c t peut être non minoré.</abstract><cop>Kidlington</cop><pub>Elsevier SAS</pub><doi>10.1016/j.matpur.2010.03.006</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9381-4676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-7824
ispartof Journal de mathématiques pures et appliquées, 2010-11, Vol.94 (5), p.497-519
issn 0021-7824
language eng
recordid cdi_hal_primary_oai_HAL_hal_00441975v1
source ScienceDirect Journals
subjects Analysis of PDEs
Calculus of variations and optimal control
Dirichlet problem
Ergodic problem
Exact sciences and technology
General mathematics
General, history and biography
Large time behavior
Mathematical analysis
Mathematics
Sciences and techniques of general use
Subquadratic case
Viscosity solutions
Viscous Hamilton–Jacobi Equations
title On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20large%20time%20behavior%20of%20solutions%20of%20the%20Dirichlet%20problem%20for%20subquadratic%20viscous%20Hamilton%E2%80%93Jacobi%20equations&rft.jtitle=Journal%20de%20math%C3%A9matiques%20pures%20et%20appliqu%C3%A9es&rft.au=Barles,%20Guy&rft.date=2010-11-01&rft.volume=94&rft.issue=5&rft.spage=497&rft.epage=519&rft.pages=497-519&rft.issn=0021-7824&rft.coden=JMPAAM&rft_id=info:doi/10.1016/j.matpur.2010.03.006&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00441975v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true