Loading…
On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations
In this article, we are interested in the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations. In the superquadratic case, the third author has proved that these solutions can have only two different behaviors: either the solution of the evolu...
Saved in:
Published in: | Journal de mathématiques pures et appliquées 2010-11, Vol.94 (5), p.497-519 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3 |
container_end_page | 519 |
container_issue | 5 |
container_start_page | 497 |
container_title | Journal de mathématiques pures et appliquées |
container_volume | 94 |
creator | Barles, Guy Porretta, Alessio Tchamba, Thierry Tabet |
description | In this article, we are interested in the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations. In the superquadratic case, the third author has proved that these solutions can have only two different behaviors: either the solution of the evolution equation converges to the solution of the associated stationary generalized Dirichlet problem (provided that it exists) or it behaves like
−
c
t
+
φ
(
x
)
where
c
⩾
0
is a constant, often called the “ergodic constant” and
φ is a solution of the so-called “ergodic problem”. In the present subquadratic case, we show that the situation is slightly more complicated: if the gradient-growth in the equation is like
|
D
u
|
m
with
m
>
3
/
2
, then analogous results hold as in the superquadratic case, at least if
c
>
0
. But, on the contrary, if
m
⩽
3
/
2
or
c
=
0
, then another different behavior appears since
u
(
x
,
t
)
+
c
t
can be unbounded from below where
u is the solution of the subquadratic viscous Hamilton–Jacobi equation.
Dans cet article, nous nous intéressons au comportement en temps grands des solutions du problème de Dirichlet pour des équations de type Hamilton–Jacobi visqueuses dans le cas sous-quadratique. Dans le cas sur-quadratique, le troisième auteur a prouvé que ces solutions ne peuvent avoir que deux comportements : ou bien la solution du problème d'évolution converge vers la solution du problème stationnaire associé (à condition qu'elle existe) ou bien elle se comporte comme
−
c
t
+
φ
(
x
)
où
c
⩾
0
est une constante, souvent appelée “constante ergodique” et
φ est la solution du “problème ergodique”. Dans le cas sous-quadratique, nous montrons que la situation est plus complexe : si le terme en gradient dans l'équation croît comme
|
D
u
|
m
avec
m
>
3
/
2
, alors le comportement est analogue au cas sur-quadratique, au moins si on a
c
>
0
. Au contraire, si
m
⩽
3
/
2
ou si
c
=
0
, alors un autre comportement apparait car, si
u est la solution de l'équation Hamilton–Jacobi visqueuse,
u
(
x
,
t
)
+
c
t
peut être non minoré. |
doi_str_mv | 10.1016/j.matpur.2010.03.006 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00441975v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021782410000395</els_id><sourcerecordid>oai_HAL_hal_00441975v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3</originalsourceid><addsrcrecordid>eNp9kL9u2zAQhzWkQPOnb9CBS4cMdo4ULUtLgSBp4gYGsqQzcSRPMQ1JdEnKQLa8Q96wT1KqKjKGy4GH77vD_YriK4clB15d7Zc9psMYlgJyC8olQHVSnAIIvljXQn4uzmLcQ35NVZ0W4-PA0o5Yh-GZWHI9MU07PDofmG9Z9N2YnB_i9Jm4Wxec2XWU2CF43VHP2kzGUf8e0QZMzrCji8aPkW2wd13yw5_Xtwc0XjtGGfo37aL41GIX6cv_el78uvvxdLNZbB_vf95cbxdG1iItuF1bUVeWhAZr69LW1JiqROJQ61ULsjUcG6GbSkoBtqmt0FSasl5JLVqB5XlxOc_dYacOwfUYXpRHpzbXWzX1AKTkzXp15JmVM2uCjzFQ-y5wUFO0aq_maNUUrYIy21XWvs3aAaPBrg04GBffXVE2vFmtZea-zxzle4-OgorG0WDIukAmKevdx4v-AqXvliU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations</title><source>ScienceDirect Journals</source><creator>Barles, Guy ; Porretta, Alessio ; Tchamba, Thierry Tabet</creator><creatorcontrib>Barles, Guy ; Porretta, Alessio ; Tchamba, Thierry Tabet</creatorcontrib><description>In this article, we are interested in the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations. In the superquadratic case, the third author has proved that these solutions can have only two different behaviors: either the solution of the evolution equation converges to the solution of the associated stationary generalized Dirichlet problem (provided that it exists) or it behaves like
−
c
t
+
φ
(
x
)
where
c
⩾
0
is a constant, often called the “ergodic constant” and
φ is a solution of the so-called “ergodic problem”. In the present subquadratic case, we show that the situation is slightly more complicated: if the gradient-growth in the equation is like
|
D
u
|
m
with
m
>
3
/
2
, then analogous results hold as in the superquadratic case, at least if
c
>
0
. But, on the contrary, if
m
⩽
3
/
2
or
c
=
0
, then another different behavior appears since
u
(
x
,
t
)
+
c
t
can be unbounded from below where
u is the solution of the subquadratic viscous Hamilton–Jacobi equation.
Dans cet article, nous nous intéressons au comportement en temps grands des solutions du problème de Dirichlet pour des équations de type Hamilton–Jacobi visqueuses dans le cas sous-quadratique. Dans le cas sur-quadratique, le troisième auteur a prouvé que ces solutions ne peuvent avoir que deux comportements : ou bien la solution du problème d'évolution converge vers la solution du problème stationnaire associé (à condition qu'elle existe) ou bien elle se comporte comme
−
c
t
+
φ
(
x
)
où
c
⩾
0
est une constante, souvent appelée “constante ergodique” et
φ est la solution du “problème ergodique”. Dans le cas sous-quadratique, nous montrons que la situation est plus complexe : si le terme en gradient dans l'équation croît comme
|
D
u
|
m
avec
m
>
3
/
2
, alors le comportement est analogue au cas sur-quadratique, au moins si on a
c
>
0
. Au contraire, si
m
⩽
3
/
2
ou si
c
=
0
, alors un autre comportement apparait car, si
u est la solution de l'équation Hamilton–Jacobi visqueuse,
u
(
x
,
t
)
+
c
t
peut être non minoré.</description><identifier>ISSN: 0021-7824</identifier><identifier>DOI: 10.1016/j.matpur.2010.03.006</identifier><identifier>CODEN: JMPAAM</identifier><language>eng</language><publisher>Kidlington: Elsevier SAS</publisher><subject>Analysis of PDEs ; Calculus of variations and optimal control ; Dirichlet problem ; Ergodic problem ; Exact sciences and technology ; General mathematics ; General, history and biography ; Large time behavior ; Mathematical analysis ; Mathematics ; Sciences and techniques of general use ; Subquadratic case ; Viscosity solutions ; Viscous Hamilton–Jacobi Equations</subject><ispartof>Journal de mathématiques pures et appliquées, 2010-11, Vol.94 (5), p.497-519</ispartof><rights>2010 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3</citedby><cites>FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3</cites><orcidid>0000-0001-9381-4676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23919574$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00441975$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barles, Guy</creatorcontrib><creatorcontrib>Porretta, Alessio</creatorcontrib><creatorcontrib>Tchamba, Thierry Tabet</creatorcontrib><title>On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations</title><title>Journal de mathématiques pures et appliquées</title><description>In this article, we are interested in the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations. In the superquadratic case, the third author has proved that these solutions can have only two different behaviors: either the solution of the evolution equation converges to the solution of the associated stationary generalized Dirichlet problem (provided that it exists) or it behaves like
−
c
t
+
φ
(
x
)
where
c
⩾
0
is a constant, often called the “ergodic constant” and
φ is a solution of the so-called “ergodic problem”. In the present subquadratic case, we show that the situation is slightly more complicated: if the gradient-growth in the equation is like
|
D
u
|
m
with
m
>
3
/
2
, then analogous results hold as in the superquadratic case, at least if
c
>
0
. But, on the contrary, if
m
⩽
3
/
2
or
c
=
0
, then another different behavior appears since
u
(
x
,
t
)
+
c
t
can be unbounded from below where
u is the solution of the subquadratic viscous Hamilton–Jacobi equation.
Dans cet article, nous nous intéressons au comportement en temps grands des solutions du problème de Dirichlet pour des équations de type Hamilton–Jacobi visqueuses dans le cas sous-quadratique. Dans le cas sur-quadratique, le troisième auteur a prouvé que ces solutions ne peuvent avoir que deux comportements : ou bien la solution du problème d'évolution converge vers la solution du problème stationnaire associé (à condition qu'elle existe) ou bien elle se comporte comme
−
c
t
+
φ
(
x
)
où
c
⩾
0
est une constante, souvent appelée “constante ergodique” et
φ est la solution du “problème ergodique”. Dans le cas sous-quadratique, nous montrons que la situation est plus complexe : si le terme en gradient dans l'équation croît comme
|
D
u
|
m
avec
m
>
3
/
2
, alors le comportement est analogue au cas sur-quadratique, au moins si on a
c
>
0
. Au contraire, si
m
⩽
3
/
2
ou si
c
=
0
, alors un autre comportement apparait car, si
u est la solution de l'équation Hamilton–Jacobi visqueuse,
u
(
x
,
t
)
+
c
t
peut être non minoré.</description><subject>Analysis of PDEs</subject><subject>Calculus of variations and optimal control</subject><subject>Dirichlet problem</subject><subject>Ergodic problem</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Large time behavior</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Subquadratic case</subject><subject>Viscosity solutions</subject><subject>Viscous Hamilton–Jacobi Equations</subject><issn>0021-7824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kL9u2zAQhzWkQPOnb9CBS4cMdo4ULUtLgSBp4gYGsqQzcSRPMQ1JdEnKQLa8Q96wT1KqKjKGy4GH77vD_YriK4clB15d7Zc9psMYlgJyC8olQHVSnAIIvljXQn4uzmLcQ35NVZ0W4-PA0o5Yh-GZWHI9MU07PDofmG9Z9N2YnB_i9Jm4Wxec2XWU2CF43VHP2kzGUf8e0QZMzrCji8aPkW2wd13yw5_Xtwc0XjtGGfo37aL41GIX6cv_el78uvvxdLNZbB_vf95cbxdG1iItuF1bUVeWhAZr69LW1JiqROJQ61ULsjUcG6GbSkoBtqmt0FSasl5JLVqB5XlxOc_dYacOwfUYXpRHpzbXWzX1AKTkzXp15JmVM2uCjzFQ-y5wUFO0aq_maNUUrYIy21XWvs3aAaPBrg04GBffXVE2vFmtZea-zxzle4-OgorG0WDIukAmKevdx4v-AqXvliU</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Barles, Guy</creator><creator>Porretta, Alessio</creator><creator>Tchamba, Thierry Tabet</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9381-4676</orcidid></search><sort><creationdate>20101101</creationdate><title>On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations</title><author>Barles, Guy ; Porretta, Alessio ; Tchamba, Thierry Tabet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis of PDEs</topic><topic>Calculus of variations and optimal control</topic><topic>Dirichlet problem</topic><topic>Ergodic problem</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Large time behavior</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Subquadratic case</topic><topic>Viscosity solutions</topic><topic>Viscous Hamilton–Jacobi Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barles, Guy</creatorcontrib><creatorcontrib>Porretta, Alessio</creatorcontrib><creatorcontrib>Tchamba, Thierry Tabet</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal de mathématiques pures et appliquées</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barles, Guy</au><au>Porretta, Alessio</au><au>Tchamba, Thierry Tabet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations</atitle><jtitle>Journal de mathématiques pures et appliquées</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>94</volume><issue>5</issue><spage>497</spage><epage>519</epage><pages>497-519</pages><issn>0021-7824</issn><coden>JMPAAM</coden><abstract>In this article, we are interested in the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations. In the superquadratic case, the third author has proved that these solutions can have only two different behaviors: either the solution of the evolution equation converges to the solution of the associated stationary generalized Dirichlet problem (provided that it exists) or it behaves like
−
c
t
+
φ
(
x
)
where
c
⩾
0
is a constant, often called the “ergodic constant” and
φ is a solution of the so-called “ergodic problem”. In the present subquadratic case, we show that the situation is slightly more complicated: if the gradient-growth in the equation is like
|
D
u
|
m
with
m
>
3
/
2
, then analogous results hold as in the superquadratic case, at least if
c
>
0
. But, on the contrary, if
m
⩽
3
/
2
or
c
=
0
, then another different behavior appears since
u
(
x
,
t
)
+
c
t
can be unbounded from below where
u is the solution of the subquadratic viscous Hamilton–Jacobi equation.
Dans cet article, nous nous intéressons au comportement en temps grands des solutions du problème de Dirichlet pour des équations de type Hamilton–Jacobi visqueuses dans le cas sous-quadratique. Dans le cas sur-quadratique, le troisième auteur a prouvé que ces solutions ne peuvent avoir que deux comportements : ou bien la solution du problème d'évolution converge vers la solution du problème stationnaire associé (à condition qu'elle existe) ou bien elle se comporte comme
−
c
t
+
φ
(
x
)
où
c
⩾
0
est une constante, souvent appelée “constante ergodique” et
φ est la solution du “problème ergodique”. Dans le cas sous-quadratique, nous montrons que la situation est plus complexe : si le terme en gradient dans l'équation croît comme
|
D
u
|
m
avec
m
>
3
/
2
, alors le comportement est analogue au cas sur-quadratique, au moins si on a
c
>
0
. Au contraire, si
m
⩽
3
/
2
ou si
c
=
0
, alors un autre comportement apparait car, si
u est la solution de l'équation Hamilton–Jacobi visqueuse,
u
(
x
,
t
)
+
c
t
peut être non minoré.</abstract><cop>Kidlington</cop><pub>Elsevier SAS</pub><doi>10.1016/j.matpur.2010.03.006</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-9381-4676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-7824 |
ispartof | Journal de mathématiques pures et appliquées, 2010-11, Vol.94 (5), p.497-519 |
issn | 0021-7824 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00441975v1 |
source | ScienceDirect Journals |
subjects | Analysis of PDEs Calculus of variations and optimal control Dirichlet problem Ergodic problem Exact sciences and technology General mathematics General, history and biography Large time behavior Mathematical analysis Mathematics Sciences and techniques of general use Subquadratic case Viscosity solutions Viscous Hamilton–Jacobi Equations |
title | On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton–Jacobi equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20large%20time%20behavior%20of%20solutions%20of%20the%20Dirichlet%20problem%20for%20subquadratic%20viscous%20Hamilton%E2%80%93Jacobi%20equations&rft.jtitle=Journal%20de%20math%C3%A9matiques%20pures%20et%20appliqu%C3%A9es&rft.au=Barles,%20Guy&rft.date=2010-11-01&rft.volume=94&rft.issue=5&rft.spage=497&rft.epage=519&rft.pages=497-519&rft.issn=0021-7824&rft.coden=JMPAAM&rft_id=info:doi/10.1016/j.matpur.2010.03.006&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00441975v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-1d7d286de2b0dd83d8e9c63ae108b5f04fc1a92b964420d98d2be3c3854b2f2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |