Loading…

3D dynamical ultrasonic model of pulsating vessel walls

The aim of this work is to introduce a novel 3-D model of pulsating vessels, through which the dynamic acoustic response of arterial regions can be predicted. Blood flow is numerically simulated by considering the fluid-dynamic displacements of the scatterers (erythrocytes), while a mechanical model...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasonics 2006-12, Vol.44, p.e179-e183
Main Authors: Balocco, S., Basset, O., Courbebaisse, G., Delachartre, P., Tortoli, P., Cachard, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this work is to introduce a novel 3-D model of pulsating vessels, through which the dynamic acoustic response of arterial regions can be predicted. Blood flow is numerically simulated by considering the fluid-dynamic displacements of the scatterers (erythrocytes), while a mechanical model calculates the wall displacement due to fluid pressure. The acoustic characteristics of each region are simulated through the FIELD software. Two numerical phantoms of a carotid artery surrounded by elastic tissue have been developed to illustrate the model. One of them includes a plaque involving a 50% stenosis. B-mode and M-mode images are produced and segmented to obtain the wall displacement profile. A cylindrical holed phantom made of cryogel mimicking material has been constructed for the model validation. In pulsatile flow conditions, fluid and wall displacements have been measured by Doppler ultrasound methods and quantitatively compared to simulated M-mode images, showing a fairly good agreement.
ISSN:0041-624X
1874-9968
DOI:10.1016/j.ultras.2006.06.045