Loading…
Numerical Investigation of a Hybrid HVOF-Plasma Spraying Process
This study deals with the numerical investigation of a hybrid thermal spray process that combines HVOF and thermal plasma technologies. In this process, a thermal plasma is used to assist the combustion process that proceeds in a quasi-conventional HVOF system. It is expected that this coupling make...
Saved in:
Published in: | Journal of thermal spray technology 2009-12, Vol.18 (5-6), p.909-920 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study deals with the numerical investigation of a hybrid thermal spray process that combines HVOF and thermal plasma technologies. In this process, a thermal plasma is used to assist the combustion process that proceeds in a quasi-conventional HVOF system. It is expected that this coupling makes the HVOF system more flexible in terms of working parameters and sprayed materials. Also, a rather low fuel gas consumption and high deposition rate compared to that of most of the conventional HVOF guns are sought. Modeling this process can help to understand the phenomena that control the operation of the spray system and, therefore, help to optimize it. The model involves the plasma formation, combustion process, and expansion of the supersonic jet in the ambient atmosphere. In this study, the system uses argon as plasma-forming gas and methane as fuel gas. Fuel and oxidant are not premixed before entering the combustion chamber. In the model, methane oxidation is represented by a single-step global reaction considering only a few chemical species (fuel, oxidant, and product species); the turbulent non-premixed combustion is modeled by a fast-chemistry combustion model that assumes that the rate of chemical reaction is controlled by turbulence. The model equations are solved using the CFD software Fluent 6.3. The main gas flow characteristics (velocity, temperature, and pressure) in presence and absence of the plasma source are compared and discussed, and the benefits of the plasma source are discussed in the light of predictions and fuel combustion mechanisms. |
---|---|
ISSN: | 1059-9630 1544-1016 |
DOI: | 10.1007/s11666-009-9398-y |