Loading…

Directional dynamics along arbitrary curves in cellular automata

This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science 2011-07, Vol.412 (30), p.3800-3821
Main Authors: Delacourt, M., Poupet, V., Sablik, M., Theyssier, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3
cites cdi_FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3
container_end_page 3821
container_issue 30
container_start_page 3800
container_title Theoretical computer science
container_volume 412
creator Delacourt, M.
Poupet, V.
Sablik, M.
Theyssier, G.
description This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviors inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space–time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers.
doi_str_mv 10.1016/j.tcs.2011.02.019
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00451729v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397511001393</els_id><sourcerecordid>901661730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwAbj1hji02GnaNOLCxL8hTeIC5yjNEsjUtSNpJ-3bk1LEEV8sWe_Zzz9CLhEyBCxvNlmvQ0YBMQOaAYojMsOKi5RSwY7JDHJgaS54cUrOQthArIKXM3L34LzRveta1STrQ6u2TodENV37kShfu94rf0j04PcmJK5NtGmaoVE-UUPfbVWvzsmJVU0wF799Tt6fHt_ul-nq9fnlfrFKNYOyT0uhLUVLdVlhYYUtSuQa0QKrK54LXTMDqswryzQvC7CgC8wZQ44Ua8PrfE6up72fqpE777Yxl-yUk8vFSo4zAFYgp2KfR-3VpN357mswoZdbF8bkqjXdEKSIxOL9HKISJ6X2XQje2L_VCHIEKzcygpUjWAlURrDRczt5THx374yXQTvTarP-QSnXnfvH_Q18i388</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901661730</pqid></control><display><type>article</type><title>Directional dynamics along arbitrary curves in cellular automata</title><source>ScienceDirect Freedom Collection</source><creator>Delacourt, M. ; Poupet, V. ; Sablik, M. ; Theyssier, G.</creator><creatorcontrib>Delacourt, M. ; Poupet, V. ; Sablik, M. ; Theyssier, G.</creatorcontrib><description>This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviors inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space–time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2011.02.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automation ; Cellular ; Cellular automata ; Directional dynamics ; Dynamic tests ; Dynamical Systems ; Dynamics ; Expansion ; Formalism ; Mathematics ; Temporal logic ; Topological dynamics</subject><ispartof>Theoretical computer science, 2011-07, Vol.412 (30), p.3800-3821</ispartof><rights>2011 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3</citedby><cites>FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3</cites><orcidid>0000-0001-5158-4606 ; 0000-0003-1944-4915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/hal-00451729$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delacourt, M.</creatorcontrib><creatorcontrib>Poupet, V.</creatorcontrib><creatorcontrib>Sablik, M.</creatorcontrib><creatorcontrib>Theyssier, G.</creatorcontrib><title>Directional dynamics along arbitrary curves in cellular automata</title><title>Theoretical computer science</title><description>This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviors inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space–time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers.</description><subject>Automation</subject><subject>Cellular</subject><subject>Cellular automata</subject><subject>Directional dynamics</subject><subject>Dynamic tests</subject><subject>Dynamical Systems</subject><subject>Dynamics</subject><subject>Expansion</subject><subject>Formalism</subject><subject>Mathematics</subject><subject>Temporal logic</subject><subject>Topological dynamics</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwAbj1hji02GnaNOLCxL8hTeIC5yjNEsjUtSNpJ-3bk1LEEV8sWe_Zzz9CLhEyBCxvNlmvQ0YBMQOaAYojMsOKi5RSwY7JDHJgaS54cUrOQthArIKXM3L34LzRveta1STrQ6u2TodENV37kShfu94rf0j04PcmJK5NtGmaoVE-UUPfbVWvzsmJVU0wF799Tt6fHt_ul-nq9fnlfrFKNYOyT0uhLUVLdVlhYYUtSuQa0QKrK54LXTMDqswryzQvC7CgC8wZQ44Ua8PrfE6up72fqpE777Yxl-yUk8vFSo4zAFYgp2KfR-3VpN357mswoZdbF8bkqjXdEKSIxOL9HKISJ6X2XQje2L_VCHIEKzcygpUjWAlURrDRczt5THx374yXQTvTarP-QSnXnfvH_Q18i388</recordid><startdate>20110708</startdate><enddate>20110708</enddate><creator>Delacourt, M.</creator><creator>Poupet, V.</creator><creator>Sablik, M.</creator><creator>Theyssier, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5158-4606</orcidid><orcidid>https://orcid.org/0000-0003-1944-4915</orcidid></search><sort><creationdate>20110708</creationdate><title>Directional dynamics along arbitrary curves in cellular automata</title><author>Delacourt, M. ; Poupet, V. ; Sablik, M. ; Theyssier, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Automation</topic><topic>Cellular</topic><topic>Cellular automata</topic><topic>Directional dynamics</topic><topic>Dynamic tests</topic><topic>Dynamical Systems</topic><topic>Dynamics</topic><topic>Expansion</topic><topic>Formalism</topic><topic>Mathematics</topic><topic>Temporal logic</topic><topic>Topological dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delacourt, M.</creatorcontrib><creatorcontrib>Poupet, V.</creatorcontrib><creatorcontrib>Sablik, M.</creatorcontrib><creatorcontrib>Theyssier, G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delacourt, M.</au><au>Poupet, V.</au><au>Sablik, M.</au><au>Theyssier, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional dynamics along arbitrary curves in cellular automata</atitle><jtitle>Theoretical computer science</jtitle><date>2011-07-08</date><risdate>2011</risdate><volume>412</volume><issue>30</issue><spage>3800</spage><epage>3821</epage><pages>3800-3821</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviors inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space–time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2011.02.019</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5158-4606</orcidid><orcidid>https://orcid.org/0000-0003-1944-4915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2011-07, Vol.412 (30), p.3800-3821
issn 0304-3975
1879-2294
language eng
recordid cdi_hal_primary_oai_HAL_hal_00451729v3
source ScienceDirect Freedom Collection
subjects Automation
Cellular
Cellular automata
Directional dynamics
Dynamic tests
Dynamical Systems
Dynamics
Expansion
Formalism
Mathematics
Temporal logic
Topological dynamics
title Directional dynamics along arbitrary curves in cellular automata
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20dynamics%20along%20arbitrary%20curves%20in%20cellular%20automata&rft.jtitle=Theoretical%20computer%20science&rft.au=Delacourt,%20M.&rft.date=2011-07-08&rft.volume=412&rft.issue=30&rft.spage=3800&rft.epage=3821&rft.pages=3800-3821&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2011.02.019&rft_dat=%3Cproquest_hal_p%3E901661730%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901661730&rft_id=info:pmid/&rfr_iscdi=true