Loading…
Directional dynamics along arbitrary curves in cellular automata
This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial...
Saved in:
Published in: | Theoretical computer science 2011-07, Vol.412 (30), p.3800-3821 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3 |
container_end_page | 3821 |
container_issue | 30 |
container_start_page | 3800 |
container_title | Theoretical computer science |
container_volume | 412 |
creator | Delacourt, M. Poupet, V. Sablik, M. Theyssier, G. |
description | This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviors inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space–time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers. |
doi_str_mv | 10.1016/j.tcs.2011.02.019 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00451729v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397511001393</els_id><sourcerecordid>901661730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwAbj1hji02GnaNOLCxL8hTeIC5yjNEsjUtSNpJ-3bk1LEEV8sWe_Zzz9CLhEyBCxvNlmvQ0YBMQOaAYojMsOKi5RSwY7JDHJgaS54cUrOQthArIKXM3L34LzRveta1STrQ6u2TodENV37kShfu94rf0j04PcmJK5NtGmaoVE-UUPfbVWvzsmJVU0wF799Tt6fHt_ul-nq9fnlfrFKNYOyT0uhLUVLdVlhYYUtSuQa0QKrK54LXTMDqswryzQvC7CgC8wZQ44Ua8PrfE6up72fqpE777Yxl-yUk8vFSo4zAFYgp2KfR-3VpN357mswoZdbF8bkqjXdEKSIxOL9HKISJ6X2XQje2L_VCHIEKzcygpUjWAlURrDRczt5THx374yXQTvTarP-QSnXnfvH_Q18i388</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901661730</pqid></control><display><type>article</type><title>Directional dynamics along arbitrary curves in cellular automata</title><source>ScienceDirect Freedom Collection</source><creator>Delacourt, M. ; Poupet, V. ; Sablik, M. ; Theyssier, G.</creator><creatorcontrib>Delacourt, M. ; Poupet, V. ; Sablik, M. ; Theyssier, G.</creatorcontrib><description>This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviors inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space–time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2011.02.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automation ; Cellular ; Cellular automata ; Directional dynamics ; Dynamic tests ; Dynamical Systems ; Dynamics ; Expansion ; Formalism ; Mathematics ; Temporal logic ; Topological dynamics</subject><ispartof>Theoretical computer science, 2011-07, Vol.412 (30), p.3800-3821</ispartof><rights>2011 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3</citedby><cites>FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3</cites><orcidid>0000-0001-5158-4606 ; 0000-0003-1944-4915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/hal-00451729$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delacourt, M.</creatorcontrib><creatorcontrib>Poupet, V.</creatorcontrib><creatorcontrib>Sablik, M.</creatorcontrib><creatorcontrib>Theyssier, G.</creatorcontrib><title>Directional dynamics along arbitrary curves in cellular automata</title><title>Theoretical computer science</title><description>This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviors inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space–time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers.</description><subject>Automation</subject><subject>Cellular</subject><subject>Cellular automata</subject><subject>Directional dynamics</subject><subject>Dynamic tests</subject><subject>Dynamical Systems</subject><subject>Dynamics</subject><subject>Expansion</subject><subject>Formalism</subject><subject>Mathematics</subject><subject>Temporal logic</subject><subject>Topological dynamics</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwAbj1hji02GnaNOLCxL8hTeIC5yjNEsjUtSNpJ-3bk1LEEV8sWe_Zzz9CLhEyBCxvNlmvQ0YBMQOaAYojMsOKi5RSwY7JDHJgaS54cUrOQthArIKXM3L34LzRveta1STrQ6u2TodENV37kShfu94rf0j04PcmJK5NtGmaoVE-UUPfbVWvzsmJVU0wF799Tt6fHt_ul-nq9fnlfrFKNYOyT0uhLUVLdVlhYYUtSuQa0QKrK54LXTMDqswryzQvC7CgC8wZQ44Ua8PrfE6up72fqpE777Yxl-yUk8vFSo4zAFYgp2KfR-3VpN357mswoZdbF8bkqjXdEKSIxOL9HKISJ6X2XQje2L_VCHIEKzcygpUjWAlURrDRczt5THx374yXQTvTarP-QSnXnfvH_Q18i388</recordid><startdate>20110708</startdate><enddate>20110708</enddate><creator>Delacourt, M.</creator><creator>Poupet, V.</creator><creator>Sablik, M.</creator><creator>Theyssier, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5158-4606</orcidid><orcidid>https://orcid.org/0000-0003-1944-4915</orcidid></search><sort><creationdate>20110708</creationdate><title>Directional dynamics along arbitrary curves in cellular automata</title><author>Delacourt, M. ; Poupet, V. ; Sablik, M. ; Theyssier, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Automation</topic><topic>Cellular</topic><topic>Cellular automata</topic><topic>Directional dynamics</topic><topic>Dynamic tests</topic><topic>Dynamical Systems</topic><topic>Dynamics</topic><topic>Expansion</topic><topic>Formalism</topic><topic>Mathematics</topic><topic>Temporal logic</topic><topic>Topological dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delacourt, M.</creatorcontrib><creatorcontrib>Poupet, V.</creatorcontrib><creatorcontrib>Sablik, M.</creatorcontrib><creatorcontrib>Theyssier, G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delacourt, M.</au><au>Poupet, V.</au><au>Sablik, M.</au><au>Theyssier, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional dynamics along arbitrary curves in cellular automata</atitle><jtitle>Theoretical computer science</jtitle><date>2011-07-08</date><risdate>2011</risdate><volume>412</volume><issue>30</issue><spage>3800</spage><epage>3821</epage><pages>3800-3821</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviors inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space–time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2011.02.019</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5158-4606</orcidid><orcidid>https://orcid.org/0000-0003-1944-4915</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2011-07, Vol.412 (30), p.3800-3821 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00451729v3 |
source | ScienceDirect Freedom Collection |
subjects | Automation Cellular Cellular automata Directional dynamics Dynamic tests Dynamical Systems Dynamics Expansion Formalism Mathematics Temporal logic Topological dynamics |
title | Directional dynamics along arbitrary curves in cellular automata |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20dynamics%20along%20arbitrary%20curves%20in%20cellular%20automata&rft.jtitle=Theoretical%20computer%20science&rft.au=Delacourt,%20M.&rft.date=2011-07-08&rft.volume=412&rft.issue=30&rft.spage=3800&rft.epage=3821&rft.pages=3800-3821&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2011.02.019&rft_dat=%3Cproquest_hal_p%3E901661730%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-69cf21f2c6815f9f5617c11f04b8739cb4e0a638f4c7650f0c5134417121be7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901661730&rft_id=info:pmid/&rfr_iscdi=true |