Loading…
A decision-making Fokker–Planck model in computational neuroscience
In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical...
Saved in:
Published in: | Journal of mathematical biology 2011-11, Vol.63 (5), p.801-830 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753 |
container_end_page | 830 |
container_issue | 5 |
container_start_page | 801 |
container_title | Journal of mathematical biology |
container_volume | 63 |
creator | Carrillo, José Antonio Cordier, Stéphane Mancini, Simona |
description | In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the finite-size effects and the decision’s robustness. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker–Planck partial differential equation. In particular, in the Fokker–Planck setting, we analytically discuss the asymptotic behavior for large times towards a unique probability distribution, and we propose a numerical scheme capturing this convergence. These simulations are used to validate deterministic moment methods recently applied to the stochastic differential system. Further, proving the existence, positivity and uniqueness of the probability density solution for the stationary equation, as well as for the time evolving problem, we show that this stabilization does happen. Finally, we discuss the convergence of the solution for large times to the stationary state. Our approach leads to a more detailed analytical and numerical study of decision-making models applied in computational neuroscience. |
doi_str_mv | 10.1007/s00285-010-0391-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00452994v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221146923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS1ERYfCB7BBERtgYXjPdmJ7OapaijRSWcDacp2Xkk4SD_GkErv-Q_-wX1KHlCIhwcqSfd61fQ9jrxA-IID-mACEKTkgcJAWuXzCVqik4KiwespWIEHyyqA4ZM9TugJAXVp8xg4FolFgcMVO1kVNoU1tHHjvt-1wWZzG7ZbGu5vbL50fwrboY01d0Q5FiP1u2vt9Zn1XDDSNMYWWhkAv2EHju0QvH9Yj9u305OvxGd-cf_p8vN7woAzsufTSNEFbT0YAlGhl5UNtjK6xqUtlJTXSB4m-lEZe1LrxNQSpqDKkhdWlPGLvl9zvvnO7se39-NNF37qz9cbNewCqFNaqa5HZtwu7G-OPidLe9W0K1OVPUZySM9YYJSzqTL77L4ki96UqK2RG3_yFXsVpzHX8ylNZh54hXKCQC0ojNY9PRXCzOLeIc1mcm8W5eeb1Q_B00VP9OPHbVAbEAqR8NFzS-Ofmf6feAy_coWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898402873</pqid></control><display><type>article</type><title>A decision-making Fokker–Planck model in computational neuroscience</title><source>Springer Nature</source><creator>Carrillo, José Antonio ; Cordier, Stéphane ; Mancini, Simona</creator><creatorcontrib>Carrillo, José Antonio ; Cordier, Stéphane ; Mancini, Simona</creatorcontrib><description>In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the finite-size effects and the decision’s robustness. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker–Planck partial differential equation. In particular, in the Fokker–Planck setting, we analytically discuss the asymptotic behavior for large times towards a unique probability distribution, and we propose a numerical scheme capturing this convergence. These simulations are used to validate deterministic moment methods recently applied to the stochastic differential system. Further, proving the existence, positivity and uniqueness of the probability density solution for the stationary equation, as well as for the time evolving problem, we show that this stabilization does happen. Finally, we discuss the convergence of the solution for large times to the stationary state. Our approach leads to a more detailed analytical and numerical study of decision-making models applied in computational neuroscience.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-010-0391-3</identifier><identifier>PMID: 21184081</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis of PDEs ; Applications of Mathematics ; Computational neuroscience ; Convergence ; Decision Making ; Evolution ; Firing rate ; Humans ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Models, Neurological ; Models, Statistical ; Neurons ; Neurosciences - methods ; Numerical Analysis, Computer-Assisted ; Stochasticity ; Visual perception</subject><ispartof>Journal of mathematical biology, 2011-11, Vol.63 (5), p.801-830</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753</citedby><cites>FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21184081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00452994$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrillo, José Antonio</creatorcontrib><creatorcontrib>Cordier, Stéphane</creatorcontrib><creatorcontrib>Mancini, Simona</creatorcontrib><title>A decision-making Fokker–Planck model in computational neuroscience</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the finite-size effects and the decision’s robustness. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker–Planck partial differential equation. In particular, in the Fokker–Planck setting, we analytically discuss the asymptotic behavior for large times towards a unique probability distribution, and we propose a numerical scheme capturing this convergence. These simulations are used to validate deterministic moment methods recently applied to the stochastic differential system. Further, proving the existence, positivity and uniqueness of the probability density solution for the stationary equation, as well as for the time evolving problem, we show that this stabilization does happen. Finally, we discuss the convergence of the solution for large times to the stationary state. Our approach leads to a more detailed analytical and numerical study of decision-making models applied in computational neuroscience.</description><subject>Analysis of PDEs</subject><subject>Applications of Mathematics</subject><subject>Computational neuroscience</subject><subject>Convergence</subject><subject>Decision Making</subject><subject>Evolution</subject><subject>Firing rate</subject><subject>Humans</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Neurons</subject><subject>Neurosciences - methods</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Stochasticity</subject><subject>Visual perception</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAURS1ERYfCB7BBERtgYXjPdmJ7OapaijRSWcDacp2Xkk4SD_GkErv-Q_-wX1KHlCIhwcqSfd61fQ9jrxA-IID-mACEKTkgcJAWuXzCVqik4KiwespWIEHyyqA4ZM9TugJAXVp8xg4FolFgcMVO1kVNoU1tHHjvt-1wWZzG7ZbGu5vbL50fwrboY01d0Q5FiP1u2vt9Zn1XDDSNMYWWhkAv2EHju0QvH9Yj9u305OvxGd-cf_p8vN7woAzsufTSNEFbT0YAlGhl5UNtjK6xqUtlJTXSB4m-lEZe1LrxNQSpqDKkhdWlPGLvl9zvvnO7se39-NNF37qz9cbNewCqFNaqa5HZtwu7G-OPidLe9W0K1OVPUZySM9YYJSzqTL77L4ki96UqK2RG3_yFXsVpzHX8ylNZh54hXKCQC0ojNY9PRXCzOLeIc1mcm8W5eeb1Q_B00VP9OPHbVAbEAqR8NFzS-Ofmf6feAy_coWo</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Carrillo, José Antonio</creator><creator>Cordier, Stéphane</creator><creator>Mancini, Simona</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20111101</creationdate><title>A decision-making Fokker–Planck model in computational neuroscience</title><author>Carrillo, José Antonio ; Cordier, Stéphane ; Mancini, Simona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis of PDEs</topic><topic>Applications of Mathematics</topic><topic>Computational neuroscience</topic><topic>Convergence</topic><topic>Decision Making</topic><topic>Evolution</topic><topic>Firing rate</topic><topic>Humans</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Neurons</topic><topic>Neurosciences - methods</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Stochasticity</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrillo, José Antonio</creatorcontrib><creatorcontrib>Cordier, Stéphane</creatorcontrib><creatorcontrib>Mancini, Simona</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrillo, José Antonio</au><au>Cordier, Stéphane</au><au>Mancini, Simona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A decision-making Fokker–Planck model in computational neuroscience</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>63</volume><issue>5</issue><spage>801</spage><epage>830</epage><pages>801-830</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the finite-size effects and the decision’s robustness. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker–Planck partial differential equation. In particular, in the Fokker–Planck setting, we analytically discuss the asymptotic behavior for large times towards a unique probability distribution, and we propose a numerical scheme capturing this convergence. These simulations are used to validate deterministic moment methods recently applied to the stochastic differential system. Further, proving the existence, positivity and uniqueness of the probability density solution for the stationary equation, as well as for the time evolving problem, we show that this stabilization does happen. Finally, we discuss the convergence of the solution for large times to the stationary state. Our approach leads to a more detailed analytical and numerical study of decision-making models applied in computational neuroscience.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21184081</pmid><doi>10.1007/s00285-010-0391-3</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2011-11, Vol.63 (5), p.801-830 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00452994v2 |
source | Springer Nature |
subjects | Analysis of PDEs Applications of Mathematics Computational neuroscience Convergence Decision Making Evolution Firing rate Humans Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Models, Neurological Models, Statistical Neurons Neurosciences - methods Numerical Analysis, Computer-Assisted Stochasticity Visual perception |
title | A decision-making Fokker–Planck model in computational neuroscience |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20decision-making%20Fokker%E2%80%93Planck%20model%20in%20computational%20neuroscience&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Carrillo,%20Jos%C3%A9%20Antonio&rft.date=2011-11-01&rft.volume=63&rft.issue=5&rft.spage=801&rft.epage=830&rft.pages=801-830&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-010-0391-3&rft_dat=%3Cproquest_hal_p%3E1221146923%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=898402873&rft_id=info:pmid/21184081&rfr_iscdi=true |