Loading…

A decision-making Fokker–Planck model in computational neuroscience

In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical biology 2011-11, Vol.63 (5), p.801-830
Main Authors: Carrillo, José Antonio, Cordier, Stéphane, Mancini, Simona
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753
cites cdi_FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753
container_end_page 830
container_issue 5
container_start_page 801
container_title Journal of mathematical biology
container_volume 63
creator Carrillo, José Antonio
Cordier, Stéphane
Mancini, Simona
description In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the finite-size effects and the decision’s robustness. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker–Planck partial differential equation. In particular, in the Fokker–Planck setting, we analytically discuss the asymptotic behavior for large times towards a unique probability distribution, and we propose a numerical scheme capturing this convergence. These simulations are used to validate deterministic moment methods recently applied to the stochastic differential system. Further, proving the existence, positivity and uniqueness of the probability density solution for the stationary equation, as well as for the time evolving problem, we show that this stabilization does happen. Finally, we discuss the convergence of the solution for large times to the stationary state. Our approach leads to a more detailed analytical and numerical study of decision-making models applied in computational neuroscience.
doi_str_mv 10.1007/s00285-010-0391-3
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00452994v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221146923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS1ERYfCB7BBERtgYXjPdmJ7OapaijRSWcDacp2Xkk4SD_GkErv-Q_-wX1KHlCIhwcqSfd61fQ9jrxA-IID-mACEKTkgcJAWuXzCVqik4KiwespWIEHyyqA4ZM9TugJAXVp8xg4FolFgcMVO1kVNoU1tHHjvt-1wWZzG7ZbGu5vbL50fwrboY01d0Q5FiP1u2vt9Zn1XDDSNMYWWhkAv2EHju0QvH9Yj9u305OvxGd-cf_p8vN7woAzsufTSNEFbT0YAlGhl5UNtjK6xqUtlJTXSB4m-lEZe1LrxNQSpqDKkhdWlPGLvl9zvvnO7se39-NNF37qz9cbNewCqFNaqa5HZtwu7G-OPidLe9W0K1OVPUZySM9YYJSzqTL77L4ki96UqK2RG3_yFXsVpzHX8ylNZh54hXKCQC0ojNY9PRXCzOLeIc1mcm8W5eeb1Q_B00VP9OPHbVAbEAqR8NFzS-Ofmf6feAy_coWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898402873</pqid></control><display><type>article</type><title>A decision-making Fokker–Planck model in computational neuroscience</title><source>Springer Nature</source><creator>Carrillo, José Antonio ; Cordier, Stéphane ; Mancini, Simona</creator><creatorcontrib>Carrillo, José Antonio ; Cordier, Stéphane ; Mancini, Simona</creatorcontrib><description>In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the finite-size effects and the decision’s robustness. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker–Planck partial differential equation. In particular, in the Fokker–Planck setting, we analytically discuss the asymptotic behavior for large times towards a unique probability distribution, and we propose a numerical scheme capturing this convergence. These simulations are used to validate deterministic moment methods recently applied to the stochastic differential system. Further, proving the existence, positivity and uniqueness of the probability density solution for the stationary equation, as well as for the time evolving problem, we show that this stabilization does happen. Finally, we discuss the convergence of the solution for large times to the stationary state. Our approach leads to a more detailed analytical and numerical study of decision-making models applied in computational neuroscience.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-010-0391-3</identifier><identifier>PMID: 21184081</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis of PDEs ; Applications of Mathematics ; Computational neuroscience ; Convergence ; Decision Making ; Evolution ; Firing rate ; Humans ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Models, Neurological ; Models, Statistical ; Neurons ; Neurosciences - methods ; Numerical Analysis, Computer-Assisted ; Stochasticity ; Visual perception</subject><ispartof>Journal of mathematical biology, 2011-11, Vol.63 (5), p.801-830</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753</citedby><cites>FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21184081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00452994$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrillo, José Antonio</creatorcontrib><creatorcontrib>Cordier, Stéphane</creatorcontrib><creatorcontrib>Mancini, Simona</creatorcontrib><title>A decision-making Fokker–Planck model in computational neuroscience</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the finite-size effects and the decision’s robustness. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker–Planck partial differential equation. In particular, in the Fokker–Planck setting, we analytically discuss the asymptotic behavior for large times towards a unique probability distribution, and we propose a numerical scheme capturing this convergence. These simulations are used to validate deterministic moment methods recently applied to the stochastic differential system. Further, proving the existence, positivity and uniqueness of the probability density solution for the stationary equation, as well as for the time evolving problem, we show that this stabilization does happen. Finally, we discuss the convergence of the solution for large times to the stationary state. Our approach leads to a more detailed analytical and numerical study of decision-making models applied in computational neuroscience.</description><subject>Analysis of PDEs</subject><subject>Applications of Mathematics</subject><subject>Computational neuroscience</subject><subject>Convergence</subject><subject>Decision Making</subject><subject>Evolution</subject><subject>Firing rate</subject><subject>Humans</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Neurons</subject><subject>Neurosciences - methods</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Stochasticity</subject><subject>Visual perception</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAURS1ERYfCB7BBERtgYXjPdmJ7OapaijRSWcDacp2Xkk4SD_GkErv-Q_-wX1KHlCIhwcqSfd61fQ9jrxA-IID-mACEKTkgcJAWuXzCVqik4KiwespWIEHyyqA4ZM9TugJAXVp8xg4FolFgcMVO1kVNoU1tHHjvt-1wWZzG7ZbGu5vbL50fwrboY01d0Q5FiP1u2vt9Zn1XDDSNMYWWhkAv2EHju0QvH9Yj9u305OvxGd-cf_p8vN7woAzsufTSNEFbT0YAlGhl5UNtjK6xqUtlJTXSB4m-lEZe1LrxNQSpqDKkhdWlPGLvl9zvvnO7se39-NNF37qz9cbNewCqFNaqa5HZtwu7G-OPidLe9W0K1OVPUZySM9YYJSzqTL77L4ki96UqK2RG3_yFXsVpzHX8ylNZh54hXKCQC0ojNY9PRXCzOLeIc1mcm8W5eeb1Q_B00VP9OPHbVAbEAqR8NFzS-Ofmf6feAy_coWo</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Carrillo, José Antonio</creator><creator>Cordier, Stéphane</creator><creator>Mancini, Simona</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20111101</creationdate><title>A decision-making Fokker–Planck model in computational neuroscience</title><author>Carrillo, José Antonio ; Cordier, Stéphane ; Mancini, Simona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis of PDEs</topic><topic>Applications of Mathematics</topic><topic>Computational neuroscience</topic><topic>Convergence</topic><topic>Decision Making</topic><topic>Evolution</topic><topic>Firing rate</topic><topic>Humans</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Neurons</topic><topic>Neurosciences - methods</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Stochasticity</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrillo, José Antonio</creatorcontrib><creatorcontrib>Cordier, Stéphane</creatorcontrib><creatorcontrib>Mancini, Simona</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrillo, José Antonio</au><au>Cordier, Stéphane</au><au>Mancini, Simona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A decision-making Fokker–Planck model in computational neuroscience</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>63</volume><issue>5</issue><spage>801</spage><epage>830</epage><pages>801-830</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>In computational neuroscience, decision-making may be explained analyzing models based on the evolution of the average firing rates of two interacting neuron populations, e.g., in bistable visual perception problems. These models typically lead to a multi-stable scenario for the concerned dynamical systems. Nevertheless, noise is an important feature of the model taking into account both the finite-size effects and the decision’s robustness. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker–Planck partial differential equation. In particular, in the Fokker–Planck setting, we analytically discuss the asymptotic behavior for large times towards a unique probability distribution, and we propose a numerical scheme capturing this convergence. These simulations are used to validate deterministic moment methods recently applied to the stochastic differential system. Further, proving the existence, positivity and uniqueness of the probability density solution for the stationary equation, as well as for the time evolving problem, we show that this stabilization does happen. Finally, we discuss the convergence of the solution for large times to the stationary state. Our approach leads to a more detailed analytical and numerical study of decision-making models applied in computational neuroscience.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21184081</pmid><doi>10.1007/s00285-010-0391-3</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2011-11, Vol.63 (5), p.801-830
issn 0303-6812
1432-1416
language eng
recordid cdi_hal_primary_oai_HAL_hal_00452994v2
source Springer Nature
subjects Analysis of PDEs
Applications of Mathematics
Computational neuroscience
Convergence
Decision Making
Evolution
Firing rate
Humans
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Models, Neurological
Models, Statistical
Neurons
Neurosciences - methods
Numerical Analysis, Computer-Assisted
Stochasticity
Visual perception
title A decision-making Fokker–Planck model in computational neuroscience
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20decision-making%20Fokker%E2%80%93Planck%20model%20in%20computational%20neuroscience&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Carrillo,%20Jos%C3%A9%20Antonio&rft.date=2011-11-01&rft.volume=63&rft.issue=5&rft.spage=801&rft.epage=830&rft.pages=801-830&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-010-0391-3&rft_dat=%3Cproquest_hal_p%3E1221146923%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-3a38fc79ae820051936acd887d1fd5493ef3ac31a5383bd7fad0c34e68e729753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=898402873&rft_id=info:pmid/21184081&rfr_iscdi=true