Loading…

Atomic-scale study of the role of carbon on boron clustering

Boron (BF 2, 20 keV, 3.14/cm 2) and carbon (13 keV, 10 15/cm 2) implanted silicon annealed at 800 °C during 30 min or at 1000 °C during 10 s has been investigated using a laser-assisted wide-angle tomographic atom probe (LaWaTAP) instrument. Boron–silicon clusters containing ~ 1.3 at.% of boron atom...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2010-02, Vol.518 (9), p.2406-2408
Main Authors: Philippe, T., Duguay, S., Grob, J.J., Mathiot, D., Blavette, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Boron (BF 2, 20 keV, 3.14/cm 2) and carbon (13 keV, 10 15/cm 2) implanted silicon annealed at 800 °C during 30 min or at 1000 °C during 10 s has been investigated using a laser-assisted wide-angle tomographic atom probe (LaWaTAP) instrument. Boron–silicon clusters containing ~ 1.3 at.% of boron atoms have been observed in boron implanted silicon with a concentration exceeding the solubility limit. Often identified as BICs, they are interpreted as a metastable phase. Furthermore, addition of carbon clearly reduced the clustering of boron. This was interpreted as a diminution of boron diffusion or as an increase of the solubility limit of boron. Carbon–silicon clusters containing ~ 1.5 at.% of carbon atoms were observed, maybe the precursors of the SiC phase.
ISSN:0040-6090
1879-2731
DOI:10.1016/j.tsf.2009.08.022