Loading…
Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling
The rapid evolution of photovoltaic Si production induced a shortage of high purity silicon raw material. The use of lowest purity silicon has a strong effect on the casting conditions and ingot structure and properties. During solidification, solute rejection at the growth interface leads to an inc...
Saved in:
Published in: | Journal of materials science 2010-04, Vol.45 (8), p.2218-2222 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623 |
container_end_page | 2222 |
container_issue | 8 |
container_start_page | 2218 |
container_title | Journal of materials science |
container_volume | 45 |
creator | Beaudhuin, M. Zaidat, K. Duffar, T. Lemiti, M. |
description | The rapid evolution of photovoltaic Si production induced a shortage of high purity silicon raw material. The use of lowest purity silicon has a strong effect on the casting conditions and ingot structure and properties. During solidification, solute rejection at the growth interface leads to an increase of the impurities concentration in the liquid phase and then to the precipitation of silicon nitride and silicon carbide. As a consequence, the grain structure of the ingot changes from columnar to small grains, also known as grits. A new electromagnetic levitation setup which has been developed in order to measure the undercooling versus impurity concentration is presented. The impurity concentration in the levitated Si drop is controlled by the partial pressure of nitrogen or hydrocarbon gas. As nucleation is a random phenomenon, statistical measurements are presented, from samples which showed numerous heating/melting and cooling/solidification phases. The effect of carbon impurities on the undercooling of silicon droplet is discussed. |
doi_str_mv | 10.1007/s10853-009-4011-9 |
format | article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00468055v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A363516352</galeid><sourcerecordid>A363516352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623</originalsourceid><addsrcrecordid>eNp1kUtr3DAUhUVpoNO0P6A7QxdtFk6vXta4u2FImsBAQ6ZddFOhka9dBY01lezQ_PvKcUgfEAkhcfiOuPdcQt5QOKUA6kOisJS8BKhLAZSW9TOyoFLxUiyBPycLAMZKJir6grxM6QYApGJ0Qb5vnXc29MVhjG64K_JziMF7bIqxbzAW6NFmZW-6HgdnC4-3bjCDy5b326tv67OTj4XrWz9ibzEVWb732RC867tX5Kg1PuHrh_uYfD0_-7K-KDefP12uV5vSCimHUiglbQNoKstaKQVrGd1R3qqlaJRCbgXfVRRMnQW7a_NSWPMaK6R8hxXjx-Rk_veH8foQ3d7EOx2M0xerjZ40AFEtQcpbmtl3M3uI4eeIadB7lyx6b3oMY9JK8qoGJupMvv2PvAlj7HMjmjFZK5bDrTJ1OlOd8ahzFmGIxubd4H6KFluX9RWvuKT5_FXsg2HKHH8NnRlT0pfb639ZOrM2hpQito_dUdDT5PU8-dxgrafJ66lsNntSZvsO45-ynzb9Bi0ErsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259724806</pqid></control><display><type>article</type><title>Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling</title><source>Springer Link</source><creator>Beaudhuin, M. ; Zaidat, K. ; Duffar, T. ; Lemiti, M.</creator><creatorcontrib>Beaudhuin, M. ; Zaidat, K. ; Duffar, T. ; Lemiti, M.</creatorcontrib><description>The rapid evolution of photovoltaic Si production induced a shortage of high purity silicon raw material. The use of lowest purity silicon has a strong effect on the casting conditions and ingot structure and properties. During solidification, solute rejection at the growth interface leads to an increase of the impurities concentration in the liquid phase and then to the precipitation of silicon nitride and silicon carbide. As a consequence, the grain structure of the ingot changes from columnar to small grains, also known as grits. A new electromagnetic levitation setup which has been developed in order to measure the undercooling versus impurity concentration is presented. The impurity concentration in the levitated Si drop is controlled by the partial pressure of nitrogen or hydrocarbon gas. As nucleation is a random phenomenon, statistical measurements are presented, from samples which showed numerous heating/melting and cooling/solidification phases. The effect of carbon impurities on the undercooling of silicon droplet is discussed.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-009-4011-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical Sciences ; Chemistry and Materials Science ; Classical Mechanics ; Columnar structure ; Cooling effects ; Crystallography and Scattering Methods ; Engineering Sciences ; Grain structure ; Htc2009 ; Impurities ; Ingot casting ; Ingots ; Levitation ; Levitation casting ; Liquid phases ; Magnetic levitation ; Material chemistry ; Materials ; Materials Science ; Nucleation ; Partial pressure ; Polymer Sciences ; Purity ; Silicon ; Silicon carbide ; Silicon nitride ; Solid Mechanics ; Solidification ; Statistical methods ; Supercooling ; Undercooling</subject><ispartof>Journal of materials science, 2010-04, Vol.45 (8), p.2218-2222</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2009). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623</citedby><cites>FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623</cites><orcidid>0000-0002-8160-6674 ; 0000-0002-4144-3786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00468055$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beaudhuin, M.</creatorcontrib><creatorcontrib>Zaidat, K.</creatorcontrib><creatorcontrib>Duffar, T.</creatorcontrib><creatorcontrib>Lemiti, M.</creatorcontrib><title>Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The rapid evolution of photovoltaic Si production induced a shortage of high purity silicon raw material. The use of lowest purity silicon has a strong effect on the casting conditions and ingot structure and properties. During solidification, solute rejection at the growth interface leads to an increase of the impurities concentration in the liquid phase and then to the precipitation of silicon nitride and silicon carbide. As a consequence, the grain structure of the ingot changes from columnar to small grains, also known as grits. A new electromagnetic levitation setup which has been developed in order to measure the undercooling versus impurity concentration is presented. The impurity concentration in the levitated Si drop is controlled by the partial pressure of nitrogen or hydrocarbon gas. As nucleation is a random phenomenon, statistical measurements are presented, from samples which showed numerous heating/melting and cooling/solidification phases. The effect of carbon impurities on the undercooling of silicon droplet is discussed.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Columnar structure</subject><subject>Cooling effects</subject><subject>Crystallography and Scattering Methods</subject><subject>Engineering Sciences</subject><subject>Grain structure</subject><subject>Htc2009</subject><subject>Impurities</subject><subject>Ingot casting</subject><subject>Ingots</subject><subject>Levitation</subject><subject>Levitation casting</subject><subject>Liquid phases</subject><subject>Magnetic levitation</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Nucleation</subject><subject>Partial pressure</subject><subject>Polymer Sciences</subject><subject>Purity</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Silicon nitride</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Statistical methods</subject><subject>Supercooling</subject><subject>Undercooling</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kUtr3DAUhUVpoNO0P6A7QxdtFk6vXta4u2FImsBAQ6ZddFOhka9dBY01lezQ_PvKcUgfEAkhcfiOuPdcQt5QOKUA6kOisJS8BKhLAZSW9TOyoFLxUiyBPycLAMZKJir6grxM6QYApGJ0Qb5vnXc29MVhjG64K_JziMF7bIqxbzAW6NFmZW-6HgdnC4-3bjCDy5b326tv67OTj4XrWz9ibzEVWb732RC867tX5Kg1PuHrh_uYfD0_-7K-KDefP12uV5vSCimHUiglbQNoKstaKQVrGd1R3qqlaJRCbgXfVRRMnQW7a_NSWPMaK6R8hxXjx-Rk_veH8foQ3d7EOx2M0xerjZ40AFEtQcpbmtl3M3uI4eeIadB7lyx6b3oMY9JK8qoGJupMvv2PvAlj7HMjmjFZK5bDrTJ1OlOd8ahzFmGIxubd4H6KFluX9RWvuKT5_FXsg2HKHH8NnRlT0pfb639ZOrM2hpQito_dUdDT5PU8-dxgrafJ66lsNntSZvsO45-ynzb9Bi0ErsA</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Beaudhuin, M.</creator><creator>Zaidat, K.</creator><creator>Duffar, T.</creator><creator>Lemiti, M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8160-6674</orcidid><orcidid>https://orcid.org/0000-0002-4144-3786</orcidid></search><sort><creationdate>20100401</creationdate><title>Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling</title><author>Beaudhuin, M. ; Zaidat, K. ; Duffar, T. ; Lemiti, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Columnar structure</topic><topic>Cooling effects</topic><topic>Crystallography and Scattering Methods</topic><topic>Engineering Sciences</topic><topic>Grain structure</topic><topic>Htc2009</topic><topic>Impurities</topic><topic>Ingot casting</topic><topic>Ingots</topic><topic>Levitation</topic><topic>Levitation casting</topic><topic>Liquid phases</topic><topic>Magnetic levitation</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Nucleation</topic><topic>Partial pressure</topic><topic>Polymer Sciences</topic><topic>Purity</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Silicon nitride</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Statistical methods</topic><topic>Supercooling</topic><topic>Undercooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beaudhuin, M.</creatorcontrib><creatorcontrib>Zaidat, K.</creatorcontrib><creatorcontrib>Duffar, T.</creatorcontrib><creatorcontrib>Lemiti, M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beaudhuin, M.</au><au>Zaidat, K.</au><au>Duffar, T.</au><au>Lemiti, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>45</volume><issue>8</issue><spage>2218</spage><epage>2222</epage><pages>2218-2222</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The rapid evolution of photovoltaic Si production induced a shortage of high purity silicon raw material. The use of lowest purity silicon has a strong effect on the casting conditions and ingot structure and properties. During solidification, solute rejection at the growth interface leads to an increase of the impurities concentration in the liquid phase and then to the precipitation of silicon nitride and silicon carbide. As a consequence, the grain structure of the ingot changes from columnar to small grains, also known as grits. A new electromagnetic levitation setup which has been developed in order to measure the undercooling versus impurity concentration is presented. The impurity concentration in the levitated Si drop is controlled by the partial pressure of nitrogen or hydrocarbon gas. As nucleation is a random phenomenon, statistical measurements are presented, from samples which showed numerous heating/melting and cooling/solidification phases. The effect of carbon impurities on the undercooling of silicon droplet is discussed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-009-4011-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8160-6674</orcidid><orcidid>https://orcid.org/0000-0002-4144-3786</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2010-04, Vol.45 (8), p.2218-2222 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00468055v1 |
source | Springer Link |
subjects | Characterization and Evaluation of Materials Chemical Sciences Chemistry and Materials Science Classical Mechanics Columnar structure Cooling effects Crystallography and Scattering Methods Engineering Sciences Grain structure Htc2009 Impurities Ingot casting Ingots Levitation Levitation casting Liquid phases Magnetic levitation Material chemistry Materials Materials Science Nucleation Partial pressure Polymer Sciences Purity Silicon Silicon carbide Silicon nitride Solid Mechanics Solidification Statistical methods Supercooling Undercooling |
title | Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20purity%20controlled%20under%20electromagnetic%20levitation%20(SPYCE):%20influences%20on%20undercooling&rft.jtitle=Journal%20of%20materials%20science&rft.au=Beaudhuin,%20M.&rft.date=2010-04-01&rft.volume=45&rft.issue=8&rft.spage=2218&rft.epage=2222&rft.pages=2218-2222&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-009-4011-9&rft_dat=%3Cgale_hal_p%3EA363516352%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259724806&rft_id=info:pmid/&rft_galeid=A363516352&rfr_iscdi=true |