Loading…

Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling

The rapid evolution of photovoltaic Si production induced a shortage of high purity silicon raw material. The use of lowest purity silicon has a strong effect on the casting conditions and ingot structure and properties. During solidification, solute rejection at the growth interface leads to an inc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2010-04, Vol.45 (8), p.2218-2222
Main Authors: Beaudhuin, M., Zaidat, K., Duffar, T., Lemiti, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623
cites cdi_FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623
container_end_page 2222
container_issue 8
container_start_page 2218
container_title Journal of materials science
container_volume 45
creator Beaudhuin, M.
Zaidat, K.
Duffar, T.
Lemiti, M.
description The rapid evolution of photovoltaic Si production induced a shortage of high purity silicon raw material. The use of lowest purity silicon has a strong effect on the casting conditions and ingot structure and properties. During solidification, solute rejection at the growth interface leads to an increase of the impurities concentration in the liquid phase and then to the precipitation of silicon nitride and silicon carbide. As a consequence, the grain structure of the ingot changes from columnar to small grains, also known as grits. A new electromagnetic levitation setup which has been developed in order to measure the undercooling versus impurity concentration is presented. The impurity concentration in the levitated Si drop is controlled by the partial pressure of nitrogen or hydrocarbon gas. As nucleation is a random phenomenon, statistical measurements are presented, from samples which showed numerous heating/melting and cooling/solidification phases. The effect of carbon impurities on the undercooling of silicon droplet is discussed.
doi_str_mv 10.1007/s10853-009-4011-9
format article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00468055v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A363516352</galeid><sourcerecordid>A363516352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623</originalsourceid><addsrcrecordid>eNp1kUtr3DAUhUVpoNO0P6A7QxdtFk6vXta4u2FImsBAQ6ZddFOhka9dBY01lezQ_PvKcUgfEAkhcfiOuPdcQt5QOKUA6kOisJS8BKhLAZSW9TOyoFLxUiyBPycLAMZKJir6grxM6QYApGJ0Qb5vnXc29MVhjG64K_JziMF7bIqxbzAW6NFmZW-6HgdnC4-3bjCDy5b326tv67OTj4XrWz9ibzEVWb732RC867tX5Kg1PuHrh_uYfD0_-7K-KDefP12uV5vSCimHUiglbQNoKstaKQVrGd1R3qqlaJRCbgXfVRRMnQW7a_NSWPMaK6R8hxXjx-Rk_veH8foQ3d7EOx2M0xerjZ40AFEtQcpbmtl3M3uI4eeIadB7lyx6b3oMY9JK8qoGJupMvv2PvAlj7HMjmjFZK5bDrTJ1OlOd8ahzFmGIxubd4H6KFluX9RWvuKT5_FXsg2HKHH8NnRlT0pfb639ZOrM2hpQito_dUdDT5PU8-dxgrafJ66lsNntSZvsO45-ynzb9Bi0ErsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259724806</pqid></control><display><type>article</type><title>Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling</title><source>Springer Link</source><creator>Beaudhuin, M. ; Zaidat, K. ; Duffar, T. ; Lemiti, M.</creator><creatorcontrib>Beaudhuin, M. ; Zaidat, K. ; Duffar, T. ; Lemiti, M.</creatorcontrib><description>The rapid evolution of photovoltaic Si production induced a shortage of high purity silicon raw material. The use of lowest purity silicon has a strong effect on the casting conditions and ingot structure and properties. During solidification, solute rejection at the growth interface leads to an increase of the impurities concentration in the liquid phase and then to the precipitation of silicon nitride and silicon carbide. As a consequence, the grain structure of the ingot changes from columnar to small grains, also known as grits. A new electromagnetic levitation setup which has been developed in order to measure the undercooling versus impurity concentration is presented. The impurity concentration in the levitated Si drop is controlled by the partial pressure of nitrogen or hydrocarbon gas. As nucleation is a random phenomenon, statistical measurements are presented, from samples which showed numerous heating/melting and cooling/solidification phases. The effect of carbon impurities on the undercooling of silicon droplet is discussed.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-009-4011-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical Sciences ; Chemistry and Materials Science ; Classical Mechanics ; Columnar structure ; Cooling effects ; Crystallography and Scattering Methods ; Engineering Sciences ; Grain structure ; Htc2009 ; Impurities ; Ingot casting ; Ingots ; Levitation ; Levitation casting ; Liquid phases ; Magnetic levitation ; Material chemistry ; Materials ; Materials Science ; Nucleation ; Partial pressure ; Polymer Sciences ; Purity ; Silicon ; Silicon carbide ; Silicon nitride ; Solid Mechanics ; Solidification ; Statistical methods ; Supercooling ; Undercooling</subject><ispartof>Journal of materials science, 2010-04, Vol.45 (8), p.2218-2222</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2009). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623</citedby><cites>FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623</cites><orcidid>0000-0002-8160-6674 ; 0000-0002-4144-3786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00468055$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beaudhuin, M.</creatorcontrib><creatorcontrib>Zaidat, K.</creatorcontrib><creatorcontrib>Duffar, T.</creatorcontrib><creatorcontrib>Lemiti, M.</creatorcontrib><title>Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The rapid evolution of photovoltaic Si production induced a shortage of high purity silicon raw material. The use of lowest purity silicon has a strong effect on the casting conditions and ingot structure and properties. During solidification, solute rejection at the growth interface leads to an increase of the impurities concentration in the liquid phase and then to the precipitation of silicon nitride and silicon carbide. As a consequence, the grain structure of the ingot changes from columnar to small grains, also known as grits. A new electromagnetic levitation setup which has been developed in order to measure the undercooling versus impurity concentration is presented. The impurity concentration in the levitated Si drop is controlled by the partial pressure of nitrogen or hydrocarbon gas. As nucleation is a random phenomenon, statistical measurements are presented, from samples which showed numerous heating/melting and cooling/solidification phases. The effect of carbon impurities on the undercooling of silicon droplet is discussed.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Columnar structure</subject><subject>Cooling effects</subject><subject>Crystallography and Scattering Methods</subject><subject>Engineering Sciences</subject><subject>Grain structure</subject><subject>Htc2009</subject><subject>Impurities</subject><subject>Ingot casting</subject><subject>Ingots</subject><subject>Levitation</subject><subject>Levitation casting</subject><subject>Liquid phases</subject><subject>Magnetic levitation</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Nucleation</subject><subject>Partial pressure</subject><subject>Polymer Sciences</subject><subject>Purity</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Silicon nitride</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Statistical methods</subject><subject>Supercooling</subject><subject>Undercooling</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kUtr3DAUhUVpoNO0P6A7QxdtFk6vXta4u2FImsBAQ6ZddFOhka9dBY01lezQ_PvKcUgfEAkhcfiOuPdcQt5QOKUA6kOisJS8BKhLAZSW9TOyoFLxUiyBPycLAMZKJir6grxM6QYApGJ0Qb5vnXc29MVhjG64K_JziMF7bIqxbzAW6NFmZW-6HgdnC4-3bjCDy5b326tv67OTj4XrWz9ibzEVWb732RC867tX5Kg1PuHrh_uYfD0_-7K-KDefP12uV5vSCimHUiglbQNoKstaKQVrGd1R3qqlaJRCbgXfVRRMnQW7a_NSWPMaK6R8hxXjx-Rk_veH8foQ3d7EOx2M0xerjZ40AFEtQcpbmtl3M3uI4eeIadB7lyx6b3oMY9JK8qoGJupMvv2PvAlj7HMjmjFZK5bDrTJ1OlOd8ahzFmGIxubd4H6KFluX9RWvuKT5_FXsg2HKHH8NnRlT0pfb639ZOrM2hpQito_dUdDT5PU8-dxgrafJ66lsNntSZvsO45-ynzb9Bi0ErsA</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Beaudhuin, M.</creator><creator>Zaidat, K.</creator><creator>Duffar, T.</creator><creator>Lemiti, M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8160-6674</orcidid><orcidid>https://orcid.org/0000-0002-4144-3786</orcidid></search><sort><creationdate>20100401</creationdate><title>Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling</title><author>Beaudhuin, M. ; Zaidat, K. ; Duffar, T. ; Lemiti, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Columnar structure</topic><topic>Cooling effects</topic><topic>Crystallography and Scattering Methods</topic><topic>Engineering Sciences</topic><topic>Grain structure</topic><topic>Htc2009</topic><topic>Impurities</topic><topic>Ingot casting</topic><topic>Ingots</topic><topic>Levitation</topic><topic>Levitation casting</topic><topic>Liquid phases</topic><topic>Magnetic levitation</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Nucleation</topic><topic>Partial pressure</topic><topic>Polymer Sciences</topic><topic>Purity</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Silicon nitride</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Statistical methods</topic><topic>Supercooling</topic><topic>Undercooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beaudhuin, M.</creatorcontrib><creatorcontrib>Zaidat, K.</creatorcontrib><creatorcontrib>Duffar, T.</creatorcontrib><creatorcontrib>Lemiti, M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beaudhuin, M.</au><au>Zaidat, K.</au><au>Duffar, T.</au><au>Lemiti, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>45</volume><issue>8</issue><spage>2218</spage><epage>2222</epage><pages>2218-2222</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The rapid evolution of photovoltaic Si production induced a shortage of high purity silicon raw material. The use of lowest purity silicon has a strong effect on the casting conditions and ingot structure and properties. During solidification, solute rejection at the growth interface leads to an increase of the impurities concentration in the liquid phase and then to the precipitation of silicon nitride and silicon carbide. As a consequence, the grain structure of the ingot changes from columnar to small grains, also known as grits. A new electromagnetic levitation setup which has been developed in order to measure the undercooling versus impurity concentration is presented. The impurity concentration in the levitated Si drop is controlled by the partial pressure of nitrogen or hydrocarbon gas. As nucleation is a random phenomenon, statistical measurements are presented, from samples which showed numerous heating/melting and cooling/solidification phases. The effect of carbon impurities on the undercooling of silicon droplet is discussed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-009-4011-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8160-6674</orcidid><orcidid>https://orcid.org/0000-0002-4144-3786</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2010-04, Vol.45 (8), p.2218-2222
issn 0022-2461
1573-4803
language eng
recordid cdi_hal_primary_oai_HAL_hal_00468055v1
source Springer Link
subjects Characterization and Evaluation of Materials
Chemical Sciences
Chemistry and Materials Science
Classical Mechanics
Columnar structure
Cooling effects
Crystallography and Scattering Methods
Engineering Sciences
Grain structure
Htc2009
Impurities
Ingot casting
Ingots
Levitation
Levitation casting
Liquid phases
Magnetic levitation
Material chemistry
Materials
Materials Science
Nucleation
Partial pressure
Polymer Sciences
Purity
Silicon
Silicon carbide
Silicon nitride
Solid Mechanics
Solidification
Statistical methods
Supercooling
Undercooling
title Silicon purity controlled under electromagnetic levitation (SPYCE): influences on undercooling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20purity%20controlled%20under%20electromagnetic%20levitation%20(SPYCE):%20influences%20on%20undercooling&rft.jtitle=Journal%20of%20materials%20science&rft.au=Beaudhuin,%20M.&rft.date=2010-04-01&rft.volume=45&rft.issue=8&rft.spage=2218&rft.epage=2222&rft.pages=2218-2222&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-009-4011-9&rft_dat=%3Cgale_hal_p%3EA363516352%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-4775cd0ea6c2f5542f21b13f784d77e3c43b610a9784cbffff7e939e6e13be623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259724806&rft_id=info:pmid/&rft_galeid=A363516352&rfr_iscdi=true