Loading…
An asymmetric Kadison’s inequality
Some inequalities for positive linear maps on matrix algebras are given, especially asymmetric extensions of Kadison’s inequality and several operator versions of Chebyshev’s inequality. We also discuss well-known results around the matrix geometric mean and connect it with complex interpolation....
Saved in:
Published in: | Linear algebra and its applications 2010-09, Vol.433 (3), p.499-510 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-f049aadefdf64dee45a93e55618420660ace930bc038ff7c6083106dc17700033 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-f049aadefdf64dee45a93e55618420660ace930bc038ff7c6083106dc17700033 |
container_end_page | 510 |
container_issue | 3 |
container_start_page | 499 |
container_title | Linear algebra and its applications |
container_volume | 433 |
creator | Bourin, Jean-Christophe Ricard, Éric |
description | Some inequalities for positive linear maps on matrix algebras are given, especially asymmetric extensions of Kadison’s inequality and several operator versions of Chebyshev’s inequality. We also discuss well-known results around the matrix geometric mean and connect it with complex interpolation. |
doi_str_mv | 10.1016/j.laa.2010.03.015 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00475220v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379510001345</els_id><sourcerecordid>oai_HAL_hal_00475220v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-f049aadefdf64dee45a93e55618420660ace930bc038ff7c6083106dc17700033</originalsourceid><addsrcrecordid>eNp9kL9OwzAQxi0EEqXwAGwdYGBIOP9NIqYKAUVUYoHZOhxbuEqTYodK3XgNXo8nwVFQR6bTnX7f3XcfIecUcgpUXa_yBjFnkHrgOVB5QCa0LHhGS6kOyQSAiYwXlTwmJzGuAEAUwCbkYt7OMO7Wa9sHb2ZPWPvYtT9f33HmW_vxiY3vd6fkyGET7dlfnZLX-7uX20W2fH54vJ0vMyNA9JkDUSHW1tVOidpaIbHiVkpFS8FAKUBjKw5vBnjpXGEUlJyCqg0timSI8ym5Gve-Y6M3wa8x7HSHXi_mSz3MBteSMdjSxNKRNaGLMVi3F1DQQyR6pVMkeohEA9cpkqS5HDUbjAYbF7A1Pu6FjJWqrApI3M3I2fTs1tugo_G2Nbb2wZpe153_58ovTx50kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An asymmetric Kadison’s inequality</title><source>ScienceDirect Freedom Collection</source><creator>Bourin, Jean-Christophe ; Ricard, Éric</creator><creatorcontrib>Bourin, Jean-Christophe ; Ricard, Éric</creatorcontrib><description>Some inequalities for positive linear maps on matrix algebras are given, especially asymmetric extensions of Kadison’s inequality and several operator versions of Chebyshev’s inequality. We also discuss well-known results around the matrix geometric mean and connect it with complex interpolation.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2010.03.015</identifier><identifier>CODEN: LAAPAW</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Exact sciences and technology ; Functional Analysis ; Linear and multilinear algebra, matrix theory ; Mathematical analysis ; Mathematics ; Matrix geometric mean ; Operator inequalities ; Operator theory ; Positive linear maps ; Sciences and techniques of general use</subject><ispartof>Linear algebra and its applications, 2010-09, Vol.433 (3), p.499-510</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-f049aadefdf64dee45a93e55618420660ace930bc038ff7c6083106dc17700033</citedby><cites>FETCH-LOGICAL-c404t-f049aadefdf64dee45a93e55618420660ace930bc038ff7c6083106dc17700033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22868970$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00475220$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourin, Jean-Christophe</creatorcontrib><creatorcontrib>Ricard, Éric</creatorcontrib><title>An asymmetric Kadison’s inequality</title><title>Linear algebra and its applications</title><description>Some inequalities for positive linear maps on matrix algebras are given, especially asymmetric extensions of Kadison’s inequality and several operator versions of Chebyshev’s inequality. We also discuss well-known results around the matrix geometric mean and connect it with complex interpolation.</description><subject>Algebra</subject><subject>Exact sciences and technology</subject><subject>Functional Analysis</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Matrix geometric mean</subject><subject>Operator inequalities</subject><subject>Operator theory</subject><subject>Positive linear maps</subject><subject>Sciences and techniques of general use</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQxi0EEqXwAGwdYGBIOP9NIqYKAUVUYoHZOhxbuEqTYodK3XgNXo8nwVFQR6bTnX7f3XcfIecUcgpUXa_yBjFnkHrgOVB5QCa0LHhGS6kOyQSAiYwXlTwmJzGuAEAUwCbkYt7OMO7Wa9sHb2ZPWPvYtT9f33HmW_vxiY3vd6fkyGET7dlfnZLX-7uX20W2fH54vJ0vMyNA9JkDUSHW1tVOidpaIbHiVkpFS8FAKUBjKw5vBnjpXGEUlJyCqg0timSI8ym5Gve-Y6M3wa8x7HSHXi_mSz3MBteSMdjSxNKRNaGLMVi3F1DQQyR6pVMkeohEA9cpkqS5HDUbjAYbF7A1Pu6FjJWqrApI3M3I2fTs1tugo_G2Nbb2wZpe153_58ovTx50kQ</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Bourin, Jean-Christophe</creator><creator>Ricard, Éric</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20100901</creationdate><title>An asymmetric Kadison’s inequality</title><author>Bourin, Jean-Christophe ; Ricard, Éric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-f049aadefdf64dee45a93e55618420660ace930bc038ff7c6083106dc17700033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Exact sciences and technology</topic><topic>Functional Analysis</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Matrix geometric mean</topic><topic>Operator inequalities</topic><topic>Operator theory</topic><topic>Positive linear maps</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourin, Jean-Christophe</creatorcontrib><creatorcontrib>Ricard, Éric</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourin, Jean-Christophe</au><au>Ricard, Éric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymmetric Kadison’s inequality</atitle><jtitle>Linear algebra and its applications</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>433</volume><issue>3</issue><spage>499</spage><epage>510</epage><pages>499-510</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><coden>LAAPAW</coden><abstract>Some inequalities for positive linear maps on matrix algebras are given, especially asymmetric extensions of Kadison’s inequality and several operator versions of Chebyshev’s inequality. We also discuss well-known results around the matrix geometric mean and connect it with complex interpolation.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2010.03.015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2010-09, Vol.433 (3), p.499-510 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00475220v1 |
source | ScienceDirect Freedom Collection |
subjects | Algebra Exact sciences and technology Functional Analysis Linear and multilinear algebra, matrix theory Mathematical analysis Mathematics Matrix geometric mean Operator inequalities Operator theory Positive linear maps Sciences and techniques of general use |
title | An asymmetric Kadison’s inequality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymmetric%20Kadison%E2%80%99s%20inequality&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Bourin,%20Jean-Christophe&rft.date=2010-09-01&rft.volume=433&rft.issue=3&rft.spage=499&rft.epage=510&rft.pages=499-510&rft.issn=0024-3795&rft.eissn=1873-1856&rft.coden=LAAPAW&rft_id=info:doi/10.1016/j.laa.2010.03.015&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00475220v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-f049aadefdf64dee45a93e55618420660ace930bc038ff7c6083106dc17700033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |