Loading…

Anion conductance of the human red cell is carried by a maxi-anion channel

Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion chan...

Full description

Saved in:
Bibliographic Details
Published in:Blood cells, molecules, & diseases molecules, & diseases, 2010-04, Vol.44 (4), p.243-251
Main Authors: Glogowska, Edyta, Dyrda, Agnieszka, Cueff, Anne, Bouyer, Guillaume, Egée, Stéphane, Bennekou, Poul, Thomas, Serge L.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3
cites cdi_FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3
container_end_page 251
container_issue 4
container_start_page 243
container_title Blood cells, molecules, & diseases
container_volume 44
creator Glogowska, Edyta
Dyrda, Agnieszka
Cueff, Anne
Bouyer, Guillaume
Egée, Stéphane
Bennekou, Poul
Thomas, Serge L.Y.
description Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3.
doi_str_mv 10.1016/j.bcmd.2010.02.014
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00486393v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1079979610000707</els_id><sourcerecordid>733838599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVp6CSTvkAXQbuShSdXki1b0M0Qmj8GssleyNI1o8E_E8kOnbevjJMssxCSLt85cD9CfjHYMGDy5rCpbec2HNIA-AZY_o2cM1AyS4d9n9-lylSp5IpcxHgAAMZU9YOsOHAuparOydO290NP7dC7yY6mt0iHho57pPupMz0N6KjFtqU-UmtC8Olfn6ihnfnnM7OE96bvsb0kZ41pI_58v9fk5e7vy-1Dtnu-f7zd7jKbF8WY1cCsKkVuc2FdpUQpG15j2sFU1hZQgCskyxEUEyjzZoYE5kYWBRc1OLEm10vt3rT6GHxnwkkPxuuH7U7PM4C8kkKJN5bY3wt7DMPrhHHUnY_zOqbHYYq6FKISVaFUIvlC2jDEGLD5rGagZ9v6oGfberatgetkO4Wu3uunukP3GfnQm4A_C4DJx5vHoKP1mCQ7H9CO2g3-q_7_LsSNzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733838599</pqid></control><display><type>article</type><title>Anion conductance of the human red cell is carried by a maxi-anion channel</title><source>ScienceDirect Journals</source><creator>Glogowska, Edyta ; Dyrda, Agnieszka ; Cueff, Anne ; Bouyer, Guillaume ; Egée, Stéphane ; Bennekou, Poul ; Thomas, Serge L.Y.</creator><creatorcontrib>Glogowska, Edyta ; Dyrda, Agnieszka ; Cueff, Anne ; Bouyer, Guillaume ; Egée, Stéphane ; Bennekou, Poul ; Thomas, Serge L.Y.</creatorcontrib><description>Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3.</description><identifier>ISSN: 1079-9796</identifier><identifier>EISSN: 1096-0961</identifier><identifier>DOI: 10.1016/j.bcmd.2010.02.014</identifier><identifier>PMID: 20226698</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anion Exchange Protein 1, Erythrocyte - physiology ; Biochemistry, Molecular Biology ; Chloride Channels - blood ; Chloride Channels - physiology ; Chlorides - blood ; Culture Media, Serum-Free - pharmacology ; Erythrocytes - metabolism ; Human red blood cell ; Humans ; Ion Channel Gating ; Life Sciences ; Maxi-anion channels ; Membrane ; Nitrobenzoates - pharmacology ; Patch-Clamp Techniques ; Serum ; Thiocyanates - metabolism ; Thiocyanates - pharmacology ; Up-Regulation</subject><ispartof>Blood cells, molecules, &amp; diseases, 2010-04, Vol.44 (4), p.243-251</ispartof><rights>2010 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3</citedby><cites>FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3</cites><orcidid>0000-0002-5808-0539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20226698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00486393$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Glogowska, Edyta</creatorcontrib><creatorcontrib>Dyrda, Agnieszka</creatorcontrib><creatorcontrib>Cueff, Anne</creatorcontrib><creatorcontrib>Bouyer, Guillaume</creatorcontrib><creatorcontrib>Egée, Stéphane</creatorcontrib><creatorcontrib>Bennekou, Poul</creatorcontrib><creatorcontrib>Thomas, Serge L.Y.</creatorcontrib><title>Anion conductance of the human red cell is carried by a maxi-anion channel</title><title>Blood cells, molecules, &amp; diseases</title><addtitle>Blood Cells Mol Dis</addtitle><description>Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3.</description><subject>Anion Exchange Protein 1, Erythrocyte - physiology</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chloride Channels - blood</subject><subject>Chloride Channels - physiology</subject><subject>Chlorides - blood</subject><subject>Culture Media, Serum-Free - pharmacology</subject><subject>Erythrocytes - metabolism</subject><subject>Human red blood cell</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Life Sciences</subject><subject>Maxi-anion channels</subject><subject>Membrane</subject><subject>Nitrobenzoates - pharmacology</subject><subject>Patch-Clamp Techniques</subject><subject>Serum</subject><subject>Thiocyanates - metabolism</subject><subject>Thiocyanates - pharmacology</subject><subject>Up-Regulation</subject><issn>1079-9796</issn><issn>1096-0961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVp6CSTvkAXQbuShSdXki1b0M0Qmj8GssleyNI1o8E_E8kOnbevjJMssxCSLt85cD9CfjHYMGDy5rCpbec2HNIA-AZY_o2cM1AyS4d9n9-lylSp5IpcxHgAAMZU9YOsOHAuparOydO290NP7dC7yY6mt0iHho57pPupMz0N6KjFtqU-UmtC8Olfn6ihnfnnM7OE96bvsb0kZ41pI_58v9fk5e7vy-1Dtnu-f7zd7jKbF8WY1cCsKkVuc2FdpUQpG15j2sFU1hZQgCskyxEUEyjzZoYE5kYWBRc1OLEm10vt3rT6GHxnwkkPxuuH7U7PM4C8kkKJN5bY3wt7DMPrhHHUnY_zOqbHYYq6FKISVaFUIvlC2jDEGLD5rGagZ9v6oGfberatgetkO4Wu3uunukP3GfnQm4A_C4DJx5vHoKP1mCQ7H9CO2g3-q_7_LsSNzA</recordid><startdate>20100415</startdate><enddate>20100415</enddate><creator>Glogowska, Edyta</creator><creator>Dyrda, Agnieszka</creator><creator>Cueff, Anne</creator><creator>Bouyer, Guillaume</creator><creator>Egée, Stéphane</creator><creator>Bennekou, Poul</creator><creator>Thomas, Serge L.Y.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5808-0539</orcidid></search><sort><creationdate>20100415</creationdate><title>Anion conductance of the human red cell is carried by a maxi-anion channel</title><author>Glogowska, Edyta ; Dyrda, Agnieszka ; Cueff, Anne ; Bouyer, Guillaume ; Egée, Stéphane ; Bennekou, Poul ; Thomas, Serge L.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anion Exchange Protein 1, Erythrocyte - physiology</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chloride Channels - blood</topic><topic>Chloride Channels - physiology</topic><topic>Chlorides - blood</topic><topic>Culture Media, Serum-Free - pharmacology</topic><topic>Erythrocytes - metabolism</topic><topic>Human red blood cell</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Life Sciences</topic><topic>Maxi-anion channels</topic><topic>Membrane</topic><topic>Nitrobenzoates - pharmacology</topic><topic>Patch-Clamp Techniques</topic><topic>Serum</topic><topic>Thiocyanates - metabolism</topic><topic>Thiocyanates - pharmacology</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glogowska, Edyta</creatorcontrib><creatorcontrib>Dyrda, Agnieszka</creatorcontrib><creatorcontrib>Cueff, Anne</creatorcontrib><creatorcontrib>Bouyer, Guillaume</creatorcontrib><creatorcontrib>Egée, Stéphane</creatorcontrib><creatorcontrib>Bennekou, Poul</creatorcontrib><creatorcontrib>Thomas, Serge L.Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Blood cells, molecules, &amp; diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glogowska, Edyta</au><au>Dyrda, Agnieszka</au><au>Cueff, Anne</au><au>Bouyer, Guillaume</au><au>Egée, Stéphane</au><au>Bennekou, Poul</au><au>Thomas, Serge L.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anion conductance of the human red cell is carried by a maxi-anion channel</atitle><jtitle>Blood cells, molecules, &amp; diseases</jtitle><addtitle>Blood Cells Mol Dis</addtitle><date>2010-04-15</date><risdate>2010</risdate><volume>44</volume><issue>4</issue><spage>243</spage><epage>251</epage><pages>243-251</pages><issn>1079-9796</issn><eissn>1096-0961</eissn><abstract>Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20226698</pmid><doi>10.1016/j.bcmd.2010.02.014</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5808-0539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1079-9796
ispartof Blood cells, molecules, & diseases, 2010-04, Vol.44 (4), p.243-251
issn 1079-9796
1096-0961
language eng
recordid cdi_hal_primary_oai_HAL_hal_00486393v1
source ScienceDirect Journals
subjects Anion Exchange Protein 1, Erythrocyte - physiology
Biochemistry, Molecular Biology
Chloride Channels - blood
Chloride Channels - physiology
Chlorides - blood
Culture Media, Serum-Free - pharmacology
Erythrocytes - metabolism
Human red blood cell
Humans
Ion Channel Gating
Life Sciences
Maxi-anion channels
Membrane
Nitrobenzoates - pharmacology
Patch-Clamp Techniques
Serum
Thiocyanates - metabolism
Thiocyanates - pharmacology
Up-Regulation
title Anion conductance of the human red cell is carried by a maxi-anion channel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anion%20conductance%20of%20the%20human%20red%20cell%20is%20carried%20by%20a%20maxi-anion%20channel&rft.jtitle=Blood%20cells,%20molecules,%20&%20diseases&rft.au=Glogowska,%20Edyta&rft.date=2010-04-15&rft.volume=44&rft.issue=4&rft.spage=243&rft.epage=251&rft.pages=243-251&rft.issn=1079-9796&rft.eissn=1096-0961&rft_id=info:doi/10.1016/j.bcmd.2010.02.014&rft_dat=%3Cproquest_hal_p%3E733838599%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733838599&rft_id=info:pmid/20226698&rfr_iscdi=true