Loading…
Anion conductance of the human red cell is carried by a maxi-anion channel
Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion chan...
Saved in:
Published in: | Blood cells, molecules, & diseases molecules, & diseases, 2010-04, Vol.44 (4), p.243-251 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3 |
container_end_page | 251 |
container_issue | 4 |
container_start_page | 243 |
container_title | Blood cells, molecules, & diseases |
container_volume | 44 |
creator | Glogowska, Edyta Dyrda, Agnieszka Cueff, Anne Bouyer, Guillaume Egée, Stéphane Bennekou, Poul Thomas, Serge L.Y. |
description | Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3. |
doi_str_mv | 10.1016/j.bcmd.2010.02.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00486393v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1079979610000707</els_id><sourcerecordid>733838599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVp6CSTvkAXQbuShSdXki1b0M0Qmj8GssleyNI1o8E_E8kOnbevjJMssxCSLt85cD9CfjHYMGDy5rCpbec2HNIA-AZY_o2cM1AyS4d9n9-lylSp5IpcxHgAAMZU9YOsOHAuparOydO290NP7dC7yY6mt0iHho57pPupMz0N6KjFtqU-UmtC8Olfn6ihnfnnM7OE96bvsb0kZ41pI_58v9fk5e7vy-1Dtnu-f7zd7jKbF8WY1cCsKkVuc2FdpUQpG15j2sFU1hZQgCskyxEUEyjzZoYE5kYWBRc1OLEm10vt3rT6GHxnwkkPxuuH7U7PM4C8kkKJN5bY3wt7DMPrhHHUnY_zOqbHYYq6FKISVaFUIvlC2jDEGLD5rGagZ9v6oGfberatgetkO4Wu3uunukP3GfnQm4A_C4DJx5vHoKP1mCQ7H9CO2g3-q_7_LsSNzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733838599</pqid></control><display><type>article</type><title>Anion conductance of the human red cell is carried by a maxi-anion channel</title><source>ScienceDirect Journals</source><creator>Glogowska, Edyta ; Dyrda, Agnieszka ; Cueff, Anne ; Bouyer, Guillaume ; Egée, Stéphane ; Bennekou, Poul ; Thomas, Serge L.Y.</creator><creatorcontrib>Glogowska, Edyta ; Dyrda, Agnieszka ; Cueff, Anne ; Bouyer, Guillaume ; Egée, Stéphane ; Bennekou, Poul ; Thomas, Serge L.Y.</creatorcontrib><description>Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3.</description><identifier>ISSN: 1079-9796</identifier><identifier>EISSN: 1096-0961</identifier><identifier>DOI: 10.1016/j.bcmd.2010.02.014</identifier><identifier>PMID: 20226698</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anion Exchange Protein 1, Erythrocyte - physiology ; Biochemistry, Molecular Biology ; Chloride Channels - blood ; Chloride Channels - physiology ; Chlorides - blood ; Culture Media, Serum-Free - pharmacology ; Erythrocytes - metabolism ; Human red blood cell ; Humans ; Ion Channel Gating ; Life Sciences ; Maxi-anion channels ; Membrane ; Nitrobenzoates - pharmacology ; Patch-Clamp Techniques ; Serum ; Thiocyanates - metabolism ; Thiocyanates - pharmacology ; Up-Regulation</subject><ispartof>Blood cells, molecules, & diseases, 2010-04, Vol.44 (4), p.243-251</ispartof><rights>2010 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3</citedby><cites>FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3</cites><orcidid>0000-0002-5808-0539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20226698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00486393$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Glogowska, Edyta</creatorcontrib><creatorcontrib>Dyrda, Agnieszka</creatorcontrib><creatorcontrib>Cueff, Anne</creatorcontrib><creatorcontrib>Bouyer, Guillaume</creatorcontrib><creatorcontrib>Egée, Stéphane</creatorcontrib><creatorcontrib>Bennekou, Poul</creatorcontrib><creatorcontrib>Thomas, Serge L.Y.</creatorcontrib><title>Anion conductance of the human red cell is carried by a maxi-anion channel</title><title>Blood cells, molecules, & diseases</title><addtitle>Blood Cells Mol Dis</addtitle><description>Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3.</description><subject>Anion Exchange Protein 1, Erythrocyte - physiology</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chloride Channels - blood</subject><subject>Chloride Channels - physiology</subject><subject>Chlorides - blood</subject><subject>Culture Media, Serum-Free - pharmacology</subject><subject>Erythrocytes - metabolism</subject><subject>Human red blood cell</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Life Sciences</subject><subject>Maxi-anion channels</subject><subject>Membrane</subject><subject>Nitrobenzoates - pharmacology</subject><subject>Patch-Clamp Techniques</subject><subject>Serum</subject><subject>Thiocyanates - metabolism</subject><subject>Thiocyanates - pharmacology</subject><subject>Up-Regulation</subject><issn>1079-9796</issn><issn>1096-0961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVp6CSTvkAXQbuShSdXki1b0M0Qmj8GssleyNI1o8E_E8kOnbevjJMssxCSLt85cD9CfjHYMGDy5rCpbec2HNIA-AZY_o2cM1AyS4d9n9-lylSp5IpcxHgAAMZU9YOsOHAuparOydO290NP7dC7yY6mt0iHho57pPupMz0N6KjFtqU-UmtC8Olfn6ihnfnnM7OE96bvsb0kZ41pI_58v9fk5e7vy-1Dtnu-f7zd7jKbF8WY1cCsKkVuc2FdpUQpG15j2sFU1hZQgCskyxEUEyjzZoYE5kYWBRc1OLEm10vt3rT6GHxnwkkPxuuH7U7PM4C8kkKJN5bY3wt7DMPrhHHUnY_zOqbHYYq6FKISVaFUIvlC2jDEGLD5rGagZ9v6oGfberatgetkO4Wu3uunukP3GfnQm4A_C4DJx5vHoKP1mCQ7H9CO2g3-q_7_LsSNzA</recordid><startdate>20100415</startdate><enddate>20100415</enddate><creator>Glogowska, Edyta</creator><creator>Dyrda, Agnieszka</creator><creator>Cueff, Anne</creator><creator>Bouyer, Guillaume</creator><creator>Egée, Stéphane</creator><creator>Bennekou, Poul</creator><creator>Thomas, Serge L.Y.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5808-0539</orcidid></search><sort><creationdate>20100415</creationdate><title>Anion conductance of the human red cell is carried by a maxi-anion channel</title><author>Glogowska, Edyta ; Dyrda, Agnieszka ; Cueff, Anne ; Bouyer, Guillaume ; Egée, Stéphane ; Bennekou, Poul ; Thomas, Serge L.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anion Exchange Protein 1, Erythrocyte - physiology</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chloride Channels - blood</topic><topic>Chloride Channels - physiology</topic><topic>Chlorides - blood</topic><topic>Culture Media, Serum-Free - pharmacology</topic><topic>Erythrocytes - metabolism</topic><topic>Human red blood cell</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Life Sciences</topic><topic>Maxi-anion channels</topic><topic>Membrane</topic><topic>Nitrobenzoates - pharmacology</topic><topic>Patch-Clamp Techniques</topic><topic>Serum</topic><topic>Thiocyanates - metabolism</topic><topic>Thiocyanates - pharmacology</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glogowska, Edyta</creatorcontrib><creatorcontrib>Dyrda, Agnieszka</creatorcontrib><creatorcontrib>Cueff, Anne</creatorcontrib><creatorcontrib>Bouyer, Guillaume</creatorcontrib><creatorcontrib>Egée, Stéphane</creatorcontrib><creatorcontrib>Bennekou, Poul</creatorcontrib><creatorcontrib>Thomas, Serge L.Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Blood cells, molecules, & diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glogowska, Edyta</au><au>Dyrda, Agnieszka</au><au>Cueff, Anne</au><au>Bouyer, Guillaume</au><au>Egée, Stéphane</au><au>Bennekou, Poul</au><au>Thomas, Serge L.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anion conductance of the human red cell is carried by a maxi-anion channel</atitle><jtitle>Blood cells, molecules, & diseases</jtitle><addtitle>Blood Cells Mol Dis</addtitle><date>2010-04-15</date><risdate>2010</risdate><volume>44</volume><issue>4</issue><spage>243</spage><epage>251</epage><pages>243-251</pages><issn>1079-9796</issn><eissn>1096-0961</eissn><abstract>Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20226698</pmid><doi>10.1016/j.bcmd.2010.02.014</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5808-0539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-9796 |
ispartof | Blood cells, molecules, & diseases, 2010-04, Vol.44 (4), p.243-251 |
issn | 1079-9796 1096-0961 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00486393v1 |
source | ScienceDirect Journals |
subjects | Anion Exchange Protein 1, Erythrocyte - physiology Biochemistry, Molecular Biology Chloride Channels - blood Chloride Channels - physiology Chlorides - blood Culture Media, Serum-Free - pharmacology Erythrocytes - metabolism Human red blood cell Humans Ion Channel Gating Life Sciences Maxi-anion channels Membrane Nitrobenzoates - pharmacology Patch-Clamp Techniques Serum Thiocyanates - metabolism Thiocyanates - pharmacology Up-Regulation |
title | Anion conductance of the human red cell is carried by a maxi-anion channel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anion%20conductance%20of%20the%20human%20red%20cell%20is%20carried%20by%20a%20maxi-anion%20channel&rft.jtitle=Blood%20cells,%20molecules,%20&%20diseases&rft.au=Glogowska,%20Edyta&rft.date=2010-04-15&rft.volume=44&rft.issue=4&rft.spage=243&rft.epage=251&rft.pages=243-251&rft.issn=1079-9796&rft.eissn=1096-0961&rft_id=info:doi/10.1016/j.bcmd.2010.02.014&rft_dat=%3Cproquest_hal_p%3E733838599%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-b01c9734c43cd89376f2be010a8cc5050d5614e0913e64f3cd83e4a65523b0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733838599&rft_id=info:pmid/20226698&rfr_iscdi=true |