Loading…
Control of the Toycopter Using a Flat Approximation
This paper considers a helicopter-like setup called the Toycopter. Its particularities reside first in the fact that the toycopter motion is constrained to remain on a sphere and second in the use of a variable rotational speed of the propellers to vary the propeller thrust. A complete model using L...
Saved in:
Published in: | IEEE transactions on control systems technology 2008-09, Vol.16 (5), p.882-896 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper considers a helicopter-like setup called the Toycopter. Its particularities reside first in the fact that the toycopter motion is constrained to remain on a sphere and second in the use of a variable rotational speed of the propellers to vary the propeller thrust. A complete model using Lagrangian mechanics is derived. The Toycopter is shown to be nondifferentially flat. Nevertheless, by neglecting specific cross-couplings, a differentially flat approximation can be generated and used for controller design, provided the controller gains do not exceed certain bounds that are given explicitly. The achieved performance is better than with standard linear controllers, especially during large displacements that induce strong nonlinear gyroscopical forces. The results are illustrated both in simulation and experimentally on the setup. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2007.916333 |