Loading…
Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli
It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when ex...
Saved in:
Published in: | Journal of cellular physiology 2010-03, Vol.222 (3), p.648-657 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0021-9541 1097-4652 |
DOI: | 10.1002/jcp.21984 |