Loading…
Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction
This paper presents the development and the validation of a 3D numerical tool called “finite element model for concrete analysis method” (FEMCAM). This tool is established to model quasi-brittle and heterogeneous materials like concrete. This last one is here considered as a 3D biphasic material com...
Saved in:
Published in: | Computational materials science 2009-10, Vol.46 (4), p.1163-1177 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the development and the validation of a 3D numerical tool called “finite element model for concrete analysis method” (FEMCAM). This tool is established to model quasi-brittle and heterogeneous materials like concrete. This last one is here considered as a 3D biphasic material composed of coarse aggregates embedded in mortar. A particular attention is paid to a realistic generation of particles in concrete sample. A non-local Mazars model is used to reproduce the mortar behaviour. The validation of this mesomodelling is performed by comparison with experimental results on various tests (3-point bending tests, compressive tests and “Brazilian” splitting tests). All these results are used to study the mechanical consequences of the alkali-silica reaction, one of the main and most famous chemical degradations of concrete structures such as dams, pavements or bridges. At the mesoscale, this reaction is characterized by a swelling of the reactive granular skeleton. |
---|---|
ISSN: | 0927-0256 1879-0801 |
DOI: | 10.1016/j.commatsci.2009.06.002 |