Loading…

Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials

Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into diff...

Full description

Saved in:
Bibliographic Details
Published in:Molecular simulation 2007-02, Vol.32 (12-13), p.1079-1093
Main Authors: Martin, Paul, Parker, Steve, Spagnoli, Dino, Marmier, Arnaud, Sayle, Dean, Watson, Graeme
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1093
container_issue 12-13
container_start_page 1079
container_title Molecular simulation
container_volume 32
creator Martin, Paul
Parker, Steve
Spagnoli, Dino
Marmier, Arnaud
Sayle, Dean
Watson, Graeme
description Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into differences in oxygen atom mobility in bulk and at the most stable {111} surface of ceria. The results show enhanced surface transport but that it is via subsurface oxygen. Secondly, we investigate how polychloro-dibenzo-pdioxins (PCDDs) molecules might adsorb on clay surfaces. The resulting adsorption energies show a clear relationship with chlorine content of the molecule. Finally, we apply DL_POLY to comparing the aggregation of magnesium oxide and calcium carbonate nanoparticles. We find that very small calcium carbonate nanoparticles are amorphous and their aggregation shows no preferred orientation in contrast to magnesium, which remain highly crystalline and combine in a highly structural specific way.
doi_str_mv 10.1080/08927020601013817
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00515006v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00515006v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_00515006v13</originalsourceid><addsrcrecordid>eNqVi0FrwjAYhoM4sG77Ad5y3aHb96W21qOoQ6GygV52Ch8x1YyYlKQK_ntb2B_Y6YHnfV7GJgjvCCV8QDkXMxBQAAJmJc4GLEEQ8xSmWT5kSb-nXSBGbBzjL4DAfFokbL9oGmsUtcY77mu-81arq6XAV3dHF6MiX1Xy-6v64Ut_1Lz1fOtaHWpSOvaHrfPhRM4ovqPOG7LxhT3VHfTrH5_Z2-f6sNykZ7KyCeZC4S49GblZVLJ3ADnmAMUNs_-0D5Y6SS4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials</title><source>Taylor and Francis Science and Technology Collection</source><creator>Martin, Paul ; Parker, Steve ; Spagnoli, Dino ; Marmier, Arnaud ; Sayle, Dean ; Watson, Graeme</creator><creatorcontrib>Martin, Paul ; Parker, Steve ; Spagnoli, Dino ; Marmier, Arnaud ; Sayle, Dean ; Watson, Graeme</creatorcontrib><description>Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into differences in oxygen atom mobility in bulk and at the most stable {111} surface of ceria. The results show enhanced surface transport but that it is via subsurface oxygen. Secondly, we investigate how polychloro-dibenzo-pdioxins (PCDDs) molecules might adsorb on clay surfaces. The resulting adsorption energies show a clear relationship with chlorine content of the molecule. Finally, we apply DL_POLY to comparing the aggregation of magnesium oxide and calcium carbonate nanoparticles. We find that very small calcium carbonate nanoparticles are amorphous and their aggregation shows no preferred orientation in contrast to magnesium, which remain highly crystalline and combine in a highly structural specific way.</description><identifier>ISSN: 0892-7022</identifier><identifier>EISSN: 1029-0435</identifier><identifier>DOI: 10.1080/08927020601013817</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><ispartof>Molecular simulation, 2007-02, Vol.32 (12-13), p.1079-1093</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00515006$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Paul</creatorcontrib><creatorcontrib>Parker, Steve</creatorcontrib><creatorcontrib>Spagnoli, Dino</creatorcontrib><creatorcontrib>Marmier, Arnaud</creatorcontrib><creatorcontrib>Sayle, Dean</creatorcontrib><creatorcontrib>Watson, Graeme</creatorcontrib><title>Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials</title><title>Molecular simulation</title><description>Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into differences in oxygen atom mobility in bulk and at the most stable {111} surface of ceria. The results show enhanced surface transport but that it is via subsurface oxygen. Secondly, we investigate how polychloro-dibenzo-pdioxins (PCDDs) molecules might adsorb on clay surfaces. The resulting adsorption energies show a clear relationship with chlorine content of the molecule. Finally, we apply DL_POLY to comparing the aggregation of magnesium oxide and calcium carbonate nanoparticles. We find that very small calcium carbonate nanoparticles are amorphous and their aggregation shows no preferred orientation in contrast to magnesium, which remain highly crystalline and combine in a highly structural specific way.</description><issn>0892-7022</issn><issn>1029-0435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqVi0FrwjAYhoM4sG77Ad5y3aHb96W21qOoQ6GygV52Ch8x1YyYlKQK_ntb2B_Y6YHnfV7GJgjvCCV8QDkXMxBQAAJmJc4GLEEQ8xSmWT5kSb-nXSBGbBzjL4DAfFokbL9oGmsUtcY77mu-81arq6XAV3dHF6MiX1Xy-6v64Ut_1Lz1fOtaHWpSOvaHrfPhRM4ovqPOG7LxhT3VHfTrH5_Z2-f6sNykZ7KyCeZC4S49GblZVLJ3ADnmAMUNs_-0D5Y6SS4</recordid><startdate>20070217</startdate><enddate>20070217</enddate><creator>Martin, Paul</creator><creator>Parker, Steve</creator><creator>Spagnoli, Dino</creator><creator>Marmier, Arnaud</creator><creator>Sayle, Dean</creator><creator>Watson, Graeme</creator><general>Taylor &amp; Francis</general><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20070217</creationdate><title>Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials</title><author>Martin, Paul ; Parker, Steve ; Spagnoli, Dino ; Marmier, Arnaud ; Sayle, Dean ; Watson, Graeme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_00515006v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Paul</creatorcontrib><creatorcontrib>Parker, Steve</creatorcontrib><creatorcontrib>Spagnoli, Dino</creatorcontrib><creatorcontrib>Marmier, Arnaud</creatorcontrib><creatorcontrib>Sayle, Dean</creatorcontrib><creatorcontrib>Watson, Graeme</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Molecular simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Paul</au><au>Parker, Steve</au><au>Spagnoli, Dino</au><au>Marmier, Arnaud</au><au>Sayle, Dean</au><au>Watson, Graeme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials</atitle><jtitle>Molecular simulation</jtitle><date>2007-02-17</date><risdate>2007</risdate><volume>32</volume><issue>12-13</issue><spage>1079</spage><epage>1093</epage><pages>1079-1093</pages><issn>0892-7022</issn><eissn>1029-0435</eissn><abstract>Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into differences in oxygen atom mobility in bulk and at the most stable {111} surface of ceria. The results show enhanced surface transport but that it is via subsurface oxygen. Secondly, we investigate how polychloro-dibenzo-pdioxins (PCDDs) molecules might adsorb on clay surfaces. The resulting adsorption energies show a clear relationship with chlorine content of the molecule. Finally, we apply DL_POLY to comparing the aggregation of magnesium oxide and calcium carbonate nanoparticles. We find that very small calcium carbonate nanoparticles are amorphous and their aggregation shows no preferred orientation in contrast to magnesium, which remain highly crystalline and combine in a highly structural specific way.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/08927020601013817</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-7022
ispartof Molecular simulation, 2007-02, Vol.32 (12-13), p.1079-1093
issn 0892-7022
1029-0435
language eng
recordid cdi_hal_primary_oai_HAL_hal_00515006v1
source Taylor and Francis Science and Technology Collection
title Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Molecular%20Dynamics%20DL_POLY%20Code%20to%20Interfaces%20of%20Inorganic%20Materials&rft.jtitle=Molecular%20simulation&rft.au=Martin,%20Paul&rft.date=2007-02-17&rft.volume=32&rft.issue=12-13&rft.spage=1079&rft.epage=1093&rft.pages=1079-1093&rft.issn=0892-7022&rft.eissn=1029-0435&rft_id=info:doi/10.1080/08927020601013817&rft_dat=%3Chal%3Eoai_HAL_hal_00515006v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_00515006v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true