Loading…
Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials
Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into diff...
Saved in:
Published in: | Molecular simulation 2007-02, Vol.32 (12-13), p.1079-1093 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1093 |
container_issue | 12-13 |
container_start_page | 1079 |
container_title | Molecular simulation |
container_volume | 32 |
creator | Martin, Paul Parker, Steve Spagnoli, Dino Marmier, Arnaud Sayle, Dean Watson, Graeme |
description | Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into differences in oxygen atom mobility in bulk and at the most stable {111} surface of ceria. The results show enhanced surface transport but that it is via subsurface oxygen. Secondly, we investigate how polychloro-dibenzo-pdioxins (PCDDs) molecules might adsorb on clay surfaces. The resulting adsorption energies show a clear relationship with chlorine content of the molecule. Finally, we apply DL_POLY to comparing the aggregation of magnesium oxide and calcium carbonate nanoparticles. We find that very small calcium carbonate nanoparticles are amorphous and their aggregation shows no preferred orientation in contrast to magnesium, which remain highly crystalline and combine in a highly structural specific way. |
doi_str_mv | 10.1080/08927020601013817 |
format | article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00515006v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00515006v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_00515006v13</originalsourceid><addsrcrecordid>eNqVi0FrwjAYhoM4sG77Ad5y3aHb96W21qOoQ6GygV52Ch8x1YyYlKQK_ntb2B_Y6YHnfV7GJgjvCCV8QDkXMxBQAAJmJc4GLEEQ8xSmWT5kSb-nXSBGbBzjL4DAfFokbL9oGmsUtcY77mu-81arq6XAV3dHF6MiX1Xy-6v64Ut_1Lz1fOtaHWpSOvaHrfPhRM4ovqPOG7LxhT3VHfTrH5_Z2-f6sNykZ7KyCeZC4S49GblZVLJ3ADnmAMUNs_-0D5Y6SS4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials</title><source>Taylor and Francis Science and Technology Collection</source><creator>Martin, Paul ; Parker, Steve ; Spagnoli, Dino ; Marmier, Arnaud ; Sayle, Dean ; Watson, Graeme</creator><creatorcontrib>Martin, Paul ; Parker, Steve ; Spagnoli, Dino ; Marmier, Arnaud ; Sayle, Dean ; Watson, Graeme</creatorcontrib><description>Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into differences in oxygen atom mobility in bulk and at the most stable {111} surface of ceria. The results show enhanced surface transport but that it is via subsurface oxygen. Secondly, we investigate how polychloro-dibenzo-pdioxins (PCDDs) molecules might adsorb on clay surfaces. The resulting adsorption energies show a clear relationship with chlorine content of the molecule. Finally, we apply DL_POLY to comparing the aggregation of magnesium oxide and calcium carbonate nanoparticles. We find that very small calcium carbonate nanoparticles are amorphous and their aggregation shows no preferred orientation in contrast to magnesium, which remain highly crystalline and combine in a highly structural specific way.</description><identifier>ISSN: 0892-7022</identifier><identifier>EISSN: 1029-0435</identifier><identifier>DOI: 10.1080/08927020601013817</identifier><language>eng</language><publisher>Taylor & Francis</publisher><ispartof>Molecular simulation, 2007-02, Vol.32 (12-13), p.1079-1093</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00515006$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Paul</creatorcontrib><creatorcontrib>Parker, Steve</creatorcontrib><creatorcontrib>Spagnoli, Dino</creatorcontrib><creatorcontrib>Marmier, Arnaud</creatorcontrib><creatorcontrib>Sayle, Dean</creatorcontrib><creatorcontrib>Watson, Graeme</creatorcontrib><title>Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials</title><title>Molecular simulation</title><description>Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into differences in oxygen atom mobility in bulk and at the most stable {111} surface of ceria. The results show enhanced surface transport but that it is via subsurface oxygen. Secondly, we investigate how polychloro-dibenzo-pdioxins (PCDDs) molecules might adsorb on clay surfaces. The resulting adsorption energies show a clear relationship with chlorine content of the molecule. Finally, we apply DL_POLY to comparing the aggregation of magnesium oxide and calcium carbonate nanoparticles. We find that very small calcium carbonate nanoparticles are amorphous and their aggregation shows no preferred orientation in contrast to magnesium, which remain highly crystalline and combine in a highly structural specific way.</description><issn>0892-7022</issn><issn>1029-0435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqVi0FrwjAYhoM4sG77Ad5y3aHb96W21qOoQ6GygV52Ch8x1YyYlKQK_ntb2B_Y6YHnfV7GJgjvCCV8QDkXMxBQAAJmJc4GLEEQ8xSmWT5kSb-nXSBGbBzjL4DAfFokbL9oGmsUtcY77mu-81arq6XAV3dHF6MiX1Xy-6v64Ut_1Lz1fOtaHWpSOvaHrfPhRM4ovqPOG7LxhT3VHfTrH5_Z2-f6sNykZ7KyCeZC4S49GblZVLJ3ADnmAMUNs_-0D5Y6SS4</recordid><startdate>20070217</startdate><enddate>20070217</enddate><creator>Martin, Paul</creator><creator>Parker, Steve</creator><creator>Spagnoli, Dino</creator><creator>Marmier, Arnaud</creator><creator>Sayle, Dean</creator><creator>Watson, Graeme</creator><general>Taylor & Francis</general><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20070217</creationdate><title>Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials</title><author>Martin, Paul ; Parker, Steve ; Spagnoli, Dino ; Marmier, Arnaud ; Sayle, Dean ; Watson, Graeme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_00515006v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Paul</creatorcontrib><creatorcontrib>Parker, Steve</creatorcontrib><creatorcontrib>Spagnoli, Dino</creatorcontrib><creatorcontrib>Marmier, Arnaud</creatorcontrib><creatorcontrib>Sayle, Dean</creatorcontrib><creatorcontrib>Watson, Graeme</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Molecular simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Paul</au><au>Parker, Steve</au><au>Spagnoli, Dino</au><au>Marmier, Arnaud</au><au>Sayle, Dean</au><au>Watson, Graeme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials</atitle><jtitle>Molecular simulation</jtitle><date>2007-02-17</date><risdate>2007</risdate><volume>32</volume><issue>12-13</issue><spage>1079</spage><epage>1093</epage><pages>1079-1093</pages><issn>0892-7022</issn><eissn>1029-0435</eissn><abstract>Three recent applications of the DL_POLY molecular dynamics code are described, which demonstrate the flexibility and viability of the code for extending our understanding of the structure, stability and reactivity of ceramics and minerals at the atomic level. The first is an investigation into differences in oxygen atom mobility in bulk and at the most stable {111} surface of ceria. The results show enhanced surface transport but that it is via subsurface oxygen. Secondly, we investigate how polychloro-dibenzo-pdioxins (PCDDs) molecules might adsorb on clay surfaces. The resulting adsorption energies show a clear relationship with chlorine content of the molecule. Finally, we apply DL_POLY to comparing the aggregation of magnesium oxide and calcium carbonate nanoparticles. We find that very small calcium carbonate nanoparticles are amorphous and their aggregation shows no preferred orientation in contrast to magnesium, which remain highly crystalline and combine in a highly structural specific way.</abstract><pub>Taylor & Francis</pub><doi>10.1080/08927020601013817</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-7022 |
ispartof | Molecular simulation, 2007-02, Vol.32 (12-13), p.1079-1093 |
issn | 0892-7022 1029-0435 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00515006v1 |
source | Taylor and Francis Science and Technology Collection |
title | Application of Molecular Dynamics DL_POLY Code to Interfaces of Inorganic Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Molecular%20Dynamics%20DL_POLY%20Code%20to%20Interfaces%20of%20Inorganic%20Materials&rft.jtitle=Molecular%20simulation&rft.au=Martin,%20Paul&rft.date=2007-02-17&rft.volume=32&rft.issue=12-13&rft.spage=1079&rft.epage=1093&rft.pages=1079-1093&rft.issn=0892-7022&rft.eissn=1029-0435&rft_id=info:doi/10.1080/08927020601013817&rft_dat=%3Chal%3Eoai_HAL_hal_00515006v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_00515006v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |