Loading…
Tumor microenvironment modifications induced by soluble VEGF receptor expression in a rat liver metastasis model
Abstract Vascular endothelial growth factor is a potent pro-angiogenic growth factor which is also known to alter tumor microenvironment by inhibiting dendritic cell differentiation and promoting accumulation of myeloid-derived suppressor cells. In the present study, we analyzed the modifications in...
Saved in:
Published in: | Cancer letters 2010-12, Vol.298 (2), p.264-272 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Vascular endothelial growth factor is a potent pro-angiogenic growth factor which is also known to alter tumor microenvironment by inhibiting dendritic cell differentiation and promoting accumulation of myeloid-derived suppressor cells. In the present study, we analyzed the modifications induced by intratumoral expression of sFLT-1, a soluble VEGF receptor, in a rat metastatic colon carcinoma model. We generated colon cancer cell lines stably expressing sFLT-1 or a mock construct. Human umbilical vein endothelial cells cultured with conditioned medium from sFLT-1-expressing tumor cells exhibit a significantly decreased survival, demonstrating the functionality of the secreted sFLT-1. In vivo , sFLT-1 expression induced a 30% decrease in microvessel density in 15-day old experimental liver metastasis from colon carcinoma. Tumor growth was inhibited by 63% and 52% in left and right liver lobes respectively within 25 days. In these tumors, sFLT-1 expression was associated with a decreased myeloid cell infiltration and a modification in the expression of several cytokines/chemokines. Altogether, these results suggest that VEGF trapping by sFLT-1 intratumoral expression results in reduced vascularization, tumor growth inhibition and modification of immune tumor microenvironment. |
---|---|
ISSN: | 0304-3835 1872-7980 |
DOI: | 10.1016/j.canlet.2010.07.017 |