Loading…

The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents

This work reports results on phenol adsorption from aqueous solutions on synthetic BEA (β) and MFI (ZSM-5) zeolites, studied by heat-flow microcalorimetry. For the sake of comparison, the adsorption was performed on activated carbon, a solid customarily used for removal of phenol from water. The obt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2010-12, Vol.184 (1-3), p.477-484
Main Authors: Damjanović, Ljiljana, Rakić, Vesna, Rac, Vladislav, Stošić, Dušan, Auroux, Aline
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work reports results on phenol adsorption from aqueous solutions on synthetic BEA (β) and MFI (ZSM-5) zeolites, studied by heat-flow microcalorimetry. For the sake of comparison, the adsorption was performed on activated carbon, a solid customarily used for removal of phenol from water. The obtained values of heats evolved during phenol adsorption indicate the heterogeneity of active sites present on the investigated systems for the adsorption of phenol. In addition, the amounts of adsorbed pollutant were determined and presented in the form of adsorption isotherms, which were interpreted using Langmuir, Freundlich, Dubinin–Astakov and Sips’ equations. The latter was found to express high level of agreement with experimental data. The results obtained in this work reveal that the adsorption of phenol on zeolites depends on both Si/Al ratio and on the pore size. Hydrophobic zeolites that possess higher contents of Si show higher affinities for phenol adsorption. Among investigated zeolites, zeolite β possesses the highest capacity for adsorption of phenol. The possibility of regeneration of used adsorbents was investigated by thermal desorption technique. It has been shown that in the case of β zeolite the majority of adsorbed phenol is easily released in the low temperature region.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2010.08.059