Loading…

Mathematical modeling of heat shock protein synthesis in response to temperature change

One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Inductio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of theoretical biology 2009-08, Vol.259 (3), p.562-569
Main Authors: Szymańska, Zuzanna, Zylicz, Maciej
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3
cites cdi_FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3
container_end_page 569
container_issue 3
container_start_page 562
container_title Journal of theoretical biology
container_volume 259
creator Szymańska, Zuzanna
Zylicz, Maciej
description One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival under stress conditions [Morimoto, R.I., 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410]. In this paper we propose a mathematical model of heat shock protein synthesis induced by an external temperature stimulus. Our model consists of a system of nine nonlinear ordinary differential equations describing the temporal evolution of the key variables involved in the regulation of HSP synthesis. Computational simulations of our model are carried out for different external temperature stimuli. We compare our model predictions with experimental data for three different cases—one corresponding to heat shock, the second corresponding to slow heating conditions and the third corresponding to a short heat shock (lasting about 40 min). We also present our model predictions for heat shocks carried out up to different final temperatures and finally we present a new hypothesis concerning the molecular response to stress that explains some phenomena observed in experiments.
doi_str_mv 10.1016/j.jtbi.2009.03.021
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00554595v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519309001180</els_id><sourcerecordid>67483547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpaLZp_0APRadCDnZGkuUPyCWEfBQ25JLSo5ClcaytbW0lbSD_Plp2aW49DTM88zLzEPKNQcmA1RebcpN6V3KArgRRAmcfyIpBJ4tWVuwjWQFwXkjWiVPyOcYNZLAS9Sdymke8EQ2syO8HnUacdXJGT3T2Fie3PFM_0BF1onH05g_dBp_QLTS-LhmOLtLcBIxbv0SkydOE8xaDTruA1Ix6ecYv5GTQU8Svx3pGft3ePF3fF-vHu5_XV-vCVIKnood8byulHOredNzYtu1704vKskFr09kaGW9km99ttW0aaI3mdW0BRa8zKc7I-SF31JPaBjfr8Kq8dur-aq32MwApK9nJF5bZHwc2__N3hzGp2UWD06QX9Luo6qZqhayaDPIDaIKPMeDwL5mB2qtXG7VXr_bqFQiV1eel78f0XT-jfV85us7A5QHA7OPFYVDROFwMWhfQJGW9-1_-G5Y1lcM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67483547</pqid></control><display><type>article</type><title>Mathematical modeling of heat shock protein synthesis in response to temperature change</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Szymańska, Zuzanna ; Zylicz, Maciej</creator><creatorcontrib>Szymańska, Zuzanna ; Zylicz, Maciej</creatorcontrib><description>One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival under stress conditions [Morimoto, R.I., 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410]. In this paper we propose a mathematical model of heat shock protein synthesis induced by an external temperature stimulus. Our model consists of a system of nine nonlinear ordinary differential equations describing the temporal evolution of the key variables involved in the regulation of HSP synthesis. Computational simulations of our model are carried out for different external temperature stimuli. We compare our model predictions with experimental data for three different cases—one corresponding to heat shock, the second corresponding to slow heating conditions and the third corresponding to a short heat shock (lasting about 40 min). We also present our model predictions for heat shocks carried out up to different final temperatures and finally we present a new hypothesis concerning the molecular response to stress that explains some phenomena observed in experiments.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2009.03.021</identifier><identifier>PMID: 19327370</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cell stress ; Cells - metabolism ; Computer Simulation ; Heat shock proteins ; Heat-Shock Proteins - biosynthesis ; Heat-Shock Proteins - genetics ; Heat-Shock Response - physiology ; Models, Biological ; RNA, Messenger - analysis ; Signaling pathways ; Stress, Physiological ; Temperature ; Transcription, Genetic</subject><ispartof>Journal of theoretical biology, 2009-08, Vol.259 (3), p.562-569</ispartof><rights>2009 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3</citedby><cites>FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19327370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00554595$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Szymańska, Zuzanna</creatorcontrib><creatorcontrib>Zylicz, Maciej</creatorcontrib><title>Mathematical modeling of heat shock protein synthesis in response to temperature change</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival under stress conditions [Morimoto, R.I., 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410]. In this paper we propose a mathematical model of heat shock protein synthesis induced by an external temperature stimulus. Our model consists of a system of nine nonlinear ordinary differential equations describing the temporal evolution of the key variables involved in the regulation of HSP synthesis. Computational simulations of our model are carried out for different external temperature stimuli. We compare our model predictions with experimental data for three different cases—one corresponding to heat shock, the second corresponding to slow heating conditions and the third corresponding to a short heat shock (lasting about 40 min). We also present our model predictions for heat shocks carried out up to different final temperatures and finally we present a new hypothesis concerning the molecular response to stress that explains some phenomena observed in experiments.</description><subject>Animals</subject><subject>Cell stress</subject><subject>Cells - metabolism</subject><subject>Computer Simulation</subject><subject>Heat shock proteins</subject><subject>Heat-Shock Proteins - biosynthesis</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Response - physiology</subject><subject>Models, Biological</subject><subject>RNA, Messenger - analysis</subject><subject>Signaling pathways</subject><subject>Stress, Physiological</subject><subject>Temperature</subject><subject>Transcription, Genetic</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpaLZp_0APRadCDnZGkuUPyCWEfBQ25JLSo5ClcaytbW0lbSD_Plp2aW49DTM88zLzEPKNQcmA1RebcpN6V3KArgRRAmcfyIpBJ4tWVuwjWQFwXkjWiVPyOcYNZLAS9Sdymke8EQ2syO8HnUacdXJGT3T2Fie3PFM_0BF1onH05g_dBp_QLTS-LhmOLtLcBIxbv0SkydOE8xaDTruA1Ix6ecYv5GTQU8Svx3pGft3ePF3fF-vHu5_XV-vCVIKnood8byulHOredNzYtu1704vKskFr09kaGW9km99ttW0aaI3mdW0BRa8zKc7I-SF31JPaBjfr8Kq8dur-aq32MwApK9nJF5bZHwc2__N3hzGp2UWD06QX9Luo6qZqhayaDPIDaIKPMeDwL5mB2qtXG7VXr_bqFQiV1eel78f0XT-jfV85us7A5QHA7OPFYVDROFwMWhfQJGW9-1_-G5Y1lcM</recordid><startdate>20090807</startdate><enddate>20090807</enddate><creator>Szymańska, Zuzanna</creator><creator>Zylicz, Maciej</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20090807</creationdate><title>Mathematical modeling of heat shock protein synthesis in response to temperature change</title><author>Szymańska, Zuzanna ; Zylicz, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Cell stress</topic><topic>Cells - metabolism</topic><topic>Computer Simulation</topic><topic>Heat shock proteins</topic><topic>Heat-Shock Proteins - biosynthesis</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Response - physiology</topic><topic>Models, Biological</topic><topic>RNA, Messenger - analysis</topic><topic>Signaling pathways</topic><topic>Stress, Physiological</topic><topic>Temperature</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szymańska, Zuzanna</creatorcontrib><creatorcontrib>Zylicz, Maciej</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szymańska, Zuzanna</au><au>Zylicz, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of heat shock protein synthesis in response to temperature change</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-08-07</date><risdate>2009</risdate><volume>259</volume><issue>3</issue><spage>562</spage><epage>569</epage><pages>562-569</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival under stress conditions [Morimoto, R.I., 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410]. In this paper we propose a mathematical model of heat shock protein synthesis induced by an external temperature stimulus. Our model consists of a system of nine nonlinear ordinary differential equations describing the temporal evolution of the key variables involved in the regulation of HSP synthesis. Computational simulations of our model are carried out for different external temperature stimuli. We compare our model predictions with experimental data for three different cases—one corresponding to heat shock, the second corresponding to slow heating conditions and the third corresponding to a short heat shock (lasting about 40 min). We also present our model predictions for heat shocks carried out up to different final temperatures and finally we present a new hypothesis concerning the molecular response to stress that explains some phenomena observed in experiments.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19327370</pmid><doi>10.1016/j.jtbi.2009.03.021</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2009-08, Vol.259 (3), p.562-569
issn 0022-5193
1095-8541
language eng
recordid cdi_hal_primary_oai_HAL_hal_00554595v1
source ScienceDirect Freedom Collection 2022-2024
subjects Animals
Cell stress
Cells - metabolism
Computer Simulation
Heat shock proteins
Heat-Shock Proteins - biosynthesis
Heat-Shock Proteins - genetics
Heat-Shock Response - physiology
Models, Biological
RNA, Messenger - analysis
Signaling pathways
Stress, Physiological
Temperature
Transcription, Genetic
title Mathematical modeling of heat shock protein synthesis in response to temperature change
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20heat%20shock%20protein%20synthesis%20in%20response%20to%20temperature%20change&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Szyma%C5%84ska,%20Zuzanna&rft.date=2009-08-07&rft.volume=259&rft.issue=3&rft.spage=562&rft.epage=569&rft.pages=562-569&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2009.03.021&rft_dat=%3Cproquest_hal_p%3E67483547%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67483547&rft_id=info:pmid/19327370&rfr_iscdi=true