Loading…
Mathematical modeling of heat shock protein synthesis in response to temperature change
One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Inductio...
Saved in:
Published in: | Journal of theoretical biology 2009-08, Vol.259 (3), p.562-569 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3 |
container_end_page | 569 |
container_issue | 3 |
container_start_page | 562 |
container_title | Journal of theoretical biology |
container_volume | 259 |
creator | Szymańska, Zuzanna Zylicz, Maciej |
description | One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival under stress conditions [Morimoto, R.I., 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410].
In this paper we propose a mathematical model of heat shock protein synthesis induced by an external temperature stimulus. Our model consists of a system of nine nonlinear ordinary differential equations describing the temporal evolution of the key variables involved in the regulation of HSP synthesis. Computational simulations of our model are carried out for different external temperature stimuli. We compare our model predictions with experimental data for three different cases—one corresponding to heat shock, the second corresponding to slow heating conditions and the third corresponding to a short heat shock (lasting about 40
min). We also present our model predictions for heat shocks carried out up to different final temperatures and finally we present a new hypothesis concerning the molecular response to stress that explains some phenomena observed in experiments. |
doi_str_mv | 10.1016/j.jtbi.2009.03.021 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00554595v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519309001180</els_id><sourcerecordid>67483547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpaLZp_0APRadCDnZGkuUPyCWEfBQ25JLSo5ClcaytbW0lbSD_Plp2aW49DTM88zLzEPKNQcmA1RebcpN6V3KArgRRAmcfyIpBJ4tWVuwjWQFwXkjWiVPyOcYNZLAS9Sdymke8EQ2syO8HnUacdXJGT3T2Fie3PFM_0BF1onH05g_dBp_QLTS-LhmOLtLcBIxbv0SkydOE8xaDTruA1Ix6ecYv5GTQU8Svx3pGft3ePF3fF-vHu5_XV-vCVIKnood8byulHOredNzYtu1704vKskFr09kaGW9km99ttW0aaI3mdW0BRa8zKc7I-SF31JPaBjfr8Kq8dur-aq32MwApK9nJF5bZHwc2__N3hzGp2UWD06QX9Luo6qZqhayaDPIDaIKPMeDwL5mB2qtXG7VXr_bqFQiV1eel78f0XT-jfV85us7A5QHA7OPFYVDROFwMWhfQJGW9-1_-G5Y1lcM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67483547</pqid></control><display><type>article</type><title>Mathematical modeling of heat shock protein synthesis in response to temperature change</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Szymańska, Zuzanna ; Zylicz, Maciej</creator><creatorcontrib>Szymańska, Zuzanna ; Zylicz, Maciej</creatorcontrib><description>One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival under stress conditions [Morimoto, R.I., 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410].
In this paper we propose a mathematical model of heat shock protein synthesis induced by an external temperature stimulus. Our model consists of a system of nine nonlinear ordinary differential equations describing the temporal evolution of the key variables involved in the regulation of HSP synthesis. Computational simulations of our model are carried out for different external temperature stimuli. We compare our model predictions with experimental data for three different cases—one corresponding to heat shock, the second corresponding to slow heating conditions and the third corresponding to a short heat shock (lasting about 40
min). We also present our model predictions for heat shocks carried out up to different final temperatures and finally we present a new hypothesis concerning the molecular response to stress that explains some phenomena observed in experiments.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2009.03.021</identifier><identifier>PMID: 19327370</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cell stress ; Cells - metabolism ; Computer Simulation ; Heat shock proteins ; Heat-Shock Proteins - biosynthesis ; Heat-Shock Proteins - genetics ; Heat-Shock Response - physiology ; Models, Biological ; RNA, Messenger - analysis ; Signaling pathways ; Stress, Physiological ; Temperature ; Transcription, Genetic</subject><ispartof>Journal of theoretical biology, 2009-08, Vol.259 (3), p.562-569</ispartof><rights>2009 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3</citedby><cites>FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19327370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00554595$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Szymańska, Zuzanna</creatorcontrib><creatorcontrib>Zylicz, Maciej</creatorcontrib><title>Mathematical modeling of heat shock protein synthesis in response to temperature change</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival under stress conditions [Morimoto, R.I., 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410].
In this paper we propose a mathematical model of heat shock protein synthesis induced by an external temperature stimulus. Our model consists of a system of nine nonlinear ordinary differential equations describing the temporal evolution of the key variables involved in the regulation of HSP synthesis. Computational simulations of our model are carried out for different external temperature stimuli. We compare our model predictions with experimental data for three different cases—one corresponding to heat shock, the second corresponding to slow heating conditions and the third corresponding to a short heat shock (lasting about 40
min). We also present our model predictions for heat shocks carried out up to different final temperatures and finally we present a new hypothesis concerning the molecular response to stress that explains some phenomena observed in experiments.</description><subject>Animals</subject><subject>Cell stress</subject><subject>Cells - metabolism</subject><subject>Computer Simulation</subject><subject>Heat shock proteins</subject><subject>Heat-Shock Proteins - biosynthesis</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Response - physiology</subject><subject>Models, Biological</subject><subject>RNA, Messenger - analysis</subject><subject>Signaling pathways</subject><subject>Stress, Physiological</subject><subject>Temperature</subject><subject>Transcription, Genetic</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpaLZp_0APRadCDnZGkuUPyCWEfBQ25JLSo5ClcaytbW0lbSD_Plp2aW49DTM88zLzEPKNQcmA1RebcpN6V3KArgRRAmcfyIpBJ4tWVuwjWQFwXkjWiVPyOcYNZLAS9Sdymke8EQ2syO8HnUacdXJGT3T2Fie3PFM_0BF1onH05g_dBp_QLTS-LhmOLtLcBIxbv0SkydOE8xaDTruA1Ix6ecYv5GTQU8Svx3pGft3ePF3fF-vHu5_XV-vCVIKnood8byulHOredNzYtu1704vKskFr09kaGW9km99ttW0aaI3mdW0BRa8zKc7I-SF31JPaBjfr8Kq8dur-aq32MwApK9nJF5bZHwc2__N3hzGp2UWD06QX9Luo6qZqhayaDPIDaIKPMeDwL5mB2qtXG7VXr_bqFQiV1eel78f0XT-jfV85us7A5QHA7OPFYVDROFwMWhfQJGW9-1_-G5Y1lcM</recordid><startdate>20090807</startdate><enddate>20090807</enddate><creator>Szymańska, Zuzanna</creator><creator>Zylicz, Maciej</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20090807</creationdate><title>Mathematical modeling of heat shock protein synthesis in response to temperature change</title><author>Szymańska, Zuzanna ; Zylicz, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Cell stress</topic><topic>Cells - metabolism</topic><topic>Computer Simulation</topic><topic>Heat shock proteins</topic><topic>Heat-Shock Proteins - biosynthesis</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Response - physiology</topic><topic>Models, Biological</topic><topic>RNA, Messenger - analysis</topic><topic>Signaling pathways</topic><topic>Stress, Physiological</topic><topic>Temperature</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szymańska, Zuzanna</creatorcontrib><creatorcontrib>Zylicz, Maciej</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szymańska, Zuzanna</au><au>Zylicz, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of heat shock protein synthesis in response to temperature change</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-08-07</date><risdate>2009</risdate><volume>259</volume><issue>3</issue><spage>562</spage><epage>569</epage><pages>562-569</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>One of the most important questions in cell biology is how cells cope with rapid changes in their environment. The range of common molecular responses includes a dramatic change in the pattern of gene expression and the elevated synthesis of so-called heat shock (or stress) proteins (HSPs). Induction of HSPs increases cell survival under stress conditions [Morimoto, R.I., 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410].
In this paper we propose a mathematical model of heat shock protein synthesis induced by an external temperature stimulus. Our model consists of a system of nine nonlinear ordinary differential equations describing the temporal evolution of the key variables involved in the regulation of HSP synthesis. Computational simulations of our model are carried out for different external temperature stimuli. We compare our model predictions with experimental data for three different cases—one corresponding to heat shock, the second corresponding to slow heating conditions and the third corresponding to a short heat shock (lasting about 40
min). We also present our model predictions for heat shocks carried out up to different final temperatures and finally we present a new hypothesis concerning the molecular response to stress that explains some phenomena observed in experiments.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19327370</pmid><doi>10.1016/j.jtbi.2009.03.021</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2009-08, Vol.259 (3), p.562-569 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00554595v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Animals Cell stress Cells - metabolism Computer Simulation Heat shock proteins Heat-Shock Proteins - biosynthesis Heat-Shock Proteins - genetics Heat-Shock Response - physiology Models, Biological RNA, Messenger - analysis Signaling pathways Stress, Physiological Temperature Transcription, Genetic |
title | Mathematical modeling of heat shock protein synthesis in response to temperature change |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20heat%20shock%20protein%20synthesis%20in%20response%20to%20temperature%20change&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Szyma%C5%84ska,%20Zuzanna&rft.date=2009-08-07&rft.volume=259&rft.issue=3&rft.spage=562&rft.epage=569&rft.pages=562-569&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2009.03.021&rft_dat=%3Cproquest_hal_p%3E67483547%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-b01098555f6bc92cd88bbcb34d1faac9d6e127580168ad7708ca266d0e3babbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67483547&rft_id=info:pmid/19327370&rfr_iscdi=true |