Loading…

Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels

Supercritically dried aerogels of several polysaccharides (chitin, chitosan, alginate, alginic acid, κ-carrageenan, and agar) have been characterised by physisorption of N 2. Surface areas as high as 570 m 2 g −1 have been measured. The nature of the functional groups of the polysaccharide significa...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers 2011-04, Vol.85 (1), p.44-53
Main Authors: Robitzer, M., Tourrette, A., Horga, R., Valentin, R., Boissière, M., Devoisselle, J.M., Di Renzo, F., Quignard, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573
cites cdi_FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573
container_end_page 53
container_issue 1
container_start_page 44
container_title Carbohydrate polymers
container_volume 85
creator Robitzer, M.
Tourrette, A.
Horga, R.
Valentin, R.
Boissière, M.
Devoisselle, J.M.
Di Renzo, F.
Quignard, F.
description Supercritically dried aerogels of several polysaccharides (chitin, chitosan, alginate, alginic acid, κ-carrageenan, and agar) have been characterised by physisorption of N 2. Surface areas as high as 570 m 2 g −1 have been measured. The nature of the functional groups of the polysaccharide significantly influences the adsorption of N 2 on the surface of the aerogel. The net enthalpy of adsorption increases with the polarity of the surface groups of the polymer, in the order chitin < agar ≤ chitosan < carrageenan < alginic acid ∼ alginate. The surface area and the mesopore distribution of the aerogels depend both on the dispersion of the parent hydrogel and on the behaviour of each polymer in the drying treatment. Aerogels which retain the dispersion of the parent hydrogel are mainly macroporous (pores larger than 50 nm) while materials liable to shrink upon solvent exchange form mesoporous structures.
doi_str_mv 10.1016/j.carbpol.2011.01.040
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00573148v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861711000737</els_id><sourcerecordid>oai_HAL_hal_00573148v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573</originalsourceid><addsrcrecordid>eNqFkE1L7DAUhoMoOH78BDEbFy46npOmabMSkesHDLpQ1-FMJnEy1MmQFMF_b3orbg2BQPK8bw4PY2cIcwRUV5u5pbTcxX4uAHEOZUvYYzPsWl1hLeU-mwFKWXUK20N2lPMGylIIM_b8FIYU392W55h2Q4hbTpkTH2LsuY-JD2vH7ZoS2cGlkOk_Ej0v331lsuNTWDlObmzp8wk78NRnd_pzHrO3u3-vtw_V4vn-8fZmUVkp5VAJZUUtpNIC68Z30K4camtbQUp4pbUXpdoutdIdoaoFgFtKTYid0Bqatj5ml1PvmnqzS-GD0peJFMzDzcKMdzBSKLtPLGwzsTbFnJPzvwEEMxo0G_Nj0IwGDZQtoeQuptyOsqXeJ9rakH_DQoJuajXOcj5xnqKh92LJvL2UIlUkN8WzLsT1RBRD7jO4ZLINbmvdKiRnB7OK4Y9ZvgEJgpFS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Robitzer, M. ; Tourrette, A. ; Horga, R. ; Valentin, R. ; Boissière, M. ; Devoisselle, J.M. ; Di Renzo, F. ; Quignard, F.</creator><creatorcontrib>Robitzer, M. ; Tourrette, A. ; Horga, R. ; Valentin, R. ; Boissière, M. ; Devoisselle, J.M. ; Di Renzo, F. ; Quignard, F.</creatorcontrib><description>Supercritically dried aerogels of several polysaccharides (chitin, chitosan, alginate, alginic acid, κ-carrageenan, and agar) have been characterised by physisorption of N 2. Surface areas as high as 570 m 2 g −1 have been measured. The nature of the functional groups of the polysaccharide significantly influences the adsorption of N 2 on the surface of the aerogel. The net enthalpy of adsorption increases with the polarity of the surface groups of the polymer, in the order chitin &lt; agar ≤ chitosan &lt; carrageenan &lt; alginic acid ∼ alginate. The surface area and the mesopore distribution of the aerogels depend both on the dispersion of the parent hydrogel and on the behaviour of each polymer in the drying treatment. Aerogels which retain the dispersion of the parent hydrogel are mainly macroporous (pores larger than 50 nm) while materials liable to shrink upon solvent exchange form mesoporous structures.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2011.01.040</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>adsorption ; Adsorption enthalpy ; Aerogel ; Agar ; Alginate ; alginates ; Applied sciences ; Carrageenan ; Chemical Sciences ; Chitin ; Chitosan ; Comparison plots ; Condensed Matter ; drying ; enthalpy ; Exact sciences and technology ; hydrocolloids ; kappa carrageenan ; Material chemistry ; Materials Science ; Natural polymers ; nitrogen ; Physicochemistry of polymers ; Physics ; Physisorption ; Polymers ; Polysaccharides ; solvents ; Starch and polysaccharides ; Supercritical drying ; surface area ; Surface polarity</subject><ispartof>Carbohydrate polymers, 2011-04, Vol.85 (1), p.44-53</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573</citedby><cites>FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573</cites><orcidid>0000-0002-2148-7108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24095367$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00573148$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Robitzer, M.</creatorcontrib><creatorcontrib>Tourrette, A.</creatorcontrib><creatorcontrib>Horga, R.</creatorcontrib><creatorcontrib>Valentin, R.</creatorcontrib><creatorcontrib>Boissière, M.</creatorcontrib><creatorcontrib>Devoisselle, J.M.</creatorcontrib><creatorcontrib>Di Renzo, F.</creatorcontrib><creatorcontrib>Quignard, F.</creatorcontrib><title>Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels</title><title>Carbohydrate polymers</title><description>Supercritically dried aerogels of several polysaccharides (chitin, chitosan, alginate, alginic acid, κ-carrageenan, and agar) have been characterised by physisorption of N 2. Surface areas as high as 570 m 2 g −1 have been measured. The nature of the functional groups of the polysaccharide significantly influences the adsorption of N 2 on the surface of the aerogel. The net enthalpy of adsorption increases with the polarity of the surface groups of the polymer, in the order chitin &lt; agar ≤ chitosan &lt; carrageenan &lt; alginic acid ∼ alginate. The surface area and the mesopore distribution of the aerogels depend both on the dispersion of the parent hydrogel and on the behaviour of each polymer in the drying treatment. Aerogels which retain the dispersion of the parent hydrogel are mainly macroporous (pores larger than 50 nm) while materials liable to shrink upon solvent exchange form mesoporous structures.</description><subject>adsorption</subject><subject>Adsorption enthalpy</subject><subject>Aerogel</subject><subject>Agar</subject><subject>Alginate</subject><subject>alginates</subject><subject>Applied sciences</subject><subject>Carrageenan</subject><subject>Chemical Sciences</subject><subject>Chitin</subject><subject>Chitosan</subject><subject>Comparison plots</subject><subject>Condensed Matter</subject><subject>drying</subject><subject>enthalpy</subject><subject>Exact sciences and technology</subject><subject>hydrocolloids</subject><subject>kappa carrageenan</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Natural polymers</subject><subject>nitrogen</subject><subject>Physicochemistry of polymers</subject><subject>Physics</subject><subject>Physisorption</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>solvents</subject><subject>Starch and polysaccharides</subject><subject>Supercritical drying</subject><subject>surface area</subject><subject>Surface polarity</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1L7DAUhoMoOH78BDEbFy46npOmabMSkesHDLpQ1-FMJnEy1MmQFMF_b3orbg2BQPK8bw4PY2cIcwRUV5u5pbTcxX4uAHEOZUvYYzPsWl1hLeU-mwFKWXUK20N2lPMGylIIM_b8FIYU392W55h2Q4hbTpkTH2LsuY-JD2vH7ZoS2cGlkOk_Ej0v331lsuNTWDlObmzp8wk78NRnd_pzHrO3u3-vtw_V4vn-8fZmUVkp5VAJZUUtpNIC68Z30K4camtbQUp4pbUXpdoutdIdoaoFgFtKTYid0Bqatj5ml1PvmnqzS-GD0peJFMzDzcKMdzBSKLtPLGwzsTbFnJPzvwEEMxo0G_Nj0IwGDZQtoeQuptyOsqXeJ9rakH_DQoJuajXOcj5xnqKh92LJvL2UIlUkN8WzLsT1RBRD7jO4ZLINbmvdKiRnB7OK4Y9ZvgEJgpFS</recordid><startdate>20110422</startdate><enddate>20110422</enddate><creator>Robitzer, M.</creator><creator>Tourrette, A.</creator><creator>Horga, R.</creator><creator>Valentin, R.</creator><creator>Boissière, M.</creator><creator>Devoisselle, J.M.</creator><creator>Di Renzo, F.</creator><creator>Quignard, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2148-7108</orcidid></search><sort><creationdate>20110422</creationdate><title>Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels</title><author>Robitzer, M. ; Tourrette, A. ; Horga, R. ; Valentin, R. ; Boissière, M. ; Devoisselle, J.M. ; Di Renzo, F. ; Quignard, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adsorption</topic><topic>Adsorption enthalpy</topic><topic>Aerogel</topic><topic>Agar</topic><topic>Alginate</topic><topic>alginates</topic><topic>Applied sciences</topic><topic>Carrageenan</topic><topic>Chemical Sciences</topic><topic>Chitin</topic><topic>Chitosan</topic><topic>Comparison plots</topic><topic>Condensed Matter</topic><topic>drying</topic><topic>enthalpy</topic><topic>Exact sciences and technology</topic><topic>hydrocolloids</topic><topic>kappa carrageenan</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Natural polymers</topic><topic>nitrogen</topic><topic>Physicochemistry of polymers</topic><topic>Physics</topic><topic>Physisorption</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>solvents</topic><topic>Starch and polysaccharides</topic><topic>Supercritical drying</topic><topic>surface area</topic><topic>Surface polarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robitzer, M.</creatorcontrib><creatorcontrib>Tourrette, A.</creatorcontrib><creatorcontrib>Horga, R.</creatorcontrib><creatorcontrib>Valentin, R.</creatorcontrib><creatorcontrib>Boissière, M.</creatorcontrib><creatorcontrib>Devoisselle, J.M.</creatorcontrib><creatorcontrib>Di Renzo, F.</creatorcontrib><creatorcontrib>Quignard, F.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robitzer, M.</au><au>Tourrette, A.</au><au>Horga, R.</au><au>Valentin, R.</au><au>Boissière, M.</au><au>Devoisselle, J.M.</au><au>Di Renzo, F.</au><au>Quignard, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels</atitle><jtitle>Carbohydrate polymers</jtitle><date>2011-04-22</date><risdate>2011</risdate><volume>85</volume><issue>1</issue><spage>44</spage><epage>53</epage><pages>44-53</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>Supercritically dried aerogels of several polysaccharides (chitin, chitosan, alginate, alginic acid, κ-carrageenan, and agar) have been characterised by physisorption of N 2. Surface areas as high as 570 m 2 g −1 have been measured. The nature of the functional groups of the polysaccharide significantly influences the adsorption of N 2 on the surface of the aerogel. The net enthalpy of adsorption increases with the polarity of the surface groups of the polymer, in the order chitin &lt; agar ≤ chitosan &lt; carrageenan &lt; alginic acid ∼ alginate. The surface area and the mesopore distribution of the aerogels depend both on the dispersion of the parent hydrogel and on the behaviour of each polymer in the drying treatment. Aerogels which retain the dispersion of the parent hydrogel are mainly macroporous (pores larger than 50 nm) while materials liable to shrink upon solvent exchange form mesoporous structures.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbpol.2011.01.040</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2148-7108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2011-04, Vol.85 (1), p.44-53
issn 0144-8617
1879-1344
language eng
recordid cdi_hal_primary_oai_HAL_hal_00573148v1
source ScienceDirect Freedom Collection 2022-2024
subjects adsorption
Adsorption enthalpy
Aerogel
Agar
Alginate
alginates
Applied sciences
Carrageenan
Chemical Sciences
Chitin
Chitosan
Comparison plots
Condensed Matter
drying
enthalpy
Exact sciences and technology
hydrocolloids
kappa carrageenan
Material chemistry
Materials Science
Natural polymers
nitrogen
Physicochemistry of polymers
Physics
Physisorption
Polymers
Polysaccharides
solvents
Starch and polysaccharides
Supercritical drying
surface area
Surface polarity
title Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20sorption%20as%20a%20tool%20for%20the%20characterisation%20of%20polysaccharide%20aerogels&rft.jtitle=Carbohydrate%20polymers&rft.au=Robitzer,%20M.&rft.date=2011-04-22&rft.volume=85&rft.issue=1&rft.spage=44&rft.epage=53&rft.pages=44-53&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2011.01.040&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00573148v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true