Loading…
Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels
Supercritically dried aerogels of several polysaccharides (chitin, chitosan, alginate, alginic acid, κ-carrageenan, and agar) have been characterised by physisorption of N 2. Surface areas as high as 570 m 2 g −1 have been measured. The nature of the functional groups of the polysaccharide significa...
Saved in:
Published in: | Carbohydrate polymers 2011-04, Vol.85 (1), p.44-53 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573 |
container_end_page | 53 |
container_issue | 1 |
container_start_page | 44 |
container_title | Carbohydrate polymers |
container_volume | 85 |
creator | Robitzer, M. Tourrette, A. Horga, R. Valentin, R. Boissière, M. Devoisselle, J.M. Di Renzo, F. Quignard, F. |
description | Supercritically dried aerogels of several polysaccharides (chitin, chitosan, alginate, alginic acid, κ-carrageenan, and agar) have been characterised by physisorption of N
2. Surface areas as high as 570
m
2
g
−1 have been measured. The nature of the functional groups of the polysaccharide significantly influences the adsorption of N
2 on the surface of the aerogel. The net enthalpy of adsorption increases with the polarity of the surface groups of the polymer, in the order chitin
<
agar
≤
chitosan
<
carrageenan
<
alginic acid
∼
alginate. The surface area and the mesopore distribution of the aerogels depend both on the dispersion of the parent hydrogel and on the behaviour of each polymer in the drying treatment. Aerogels which retain the dispersion of the parent hydrogel are mainly macroporous (pores larger than 50
nm) while materials liable to shrink upon solvent exchange form mesoporous structures. |
doi_str_mv | 10.1016/j.carbpol.2011.01.040 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00573148v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861711000737</els_id><sourcerecordid>oai_HAL_hal_00573148v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573</originalsourceid><addsrcrecordid>eNqFkE1L7DAUhoMoOH78BDEbFy46npOmabMSkesHDLpQ1-FMJnEy1MmQFMF_b3orbg2BQPK8bw4PY2cIcwRUV5u5pbTcxX4uAHEOZUvYYzPsWl1hLeU-mwFKWXUK20N2lPMGylIIM_b8FIYU392W55h2Q4hbTpkTH2LsuY-JD2vH7ZoS2cGlkOk_Ej0v331lsuNTWDlObmzp8wk78NRnd_pzHrO3u3-vtw_V4vn-8fZmUVkp5VAJZUUtpNIC68Z30K4camtbQUp4pbUXpdoutdIdoaoFgFtKTYid0Bqatj5ml1PvmnqzS-GD0peJFMzDzcKMdzBSKLtPLGwzsTbFnJPzvwEEMxo0G_Nj0IwGDZQtoeQuptyOsqXeJ9rakH_DQoJuajXOcj5xnqKh92LJvL2UIlUkN8WzLsT1RBRD7jO4ZLINbmvdKiRnB7OK4Y9ZvgEJgpFS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Robitzer, M. ; Tourrette, A. ; Horga, R. ; Valentin, R. ; Boissière, M. ; Devoisselle, J.M. ; Di Renzo, F. ; Quignard, F.</creator><creatorcontrib>Robitzer, M. ; Tourrette, A. ; Horga, R. ; Valentin, R. ; Boissière, M. ; Devoisselle, J.M. ; Di Renzo, F. ; Quignard, F.</creatorcontrib><description>Supercritically dried aerogels of several polysaccharides (chitin, chitosan, alginate, alginic acid, κ-carrageenan, and agar) have been characterised by physisorption of N
2. Surface areas as high as 570
m
2
g
−1 have been measured. The nature of the functional groups of the polysaccharide significantly influences the adsorption of N
2 on the surface of the aerogel. The net enthalpy of adsorption increases with the polarity of the surface groups of the polymer, in the order chitin
<
agar
≤
chitosan
<
carrageenan
<
alginic acid
∼
alginate. The surface area and the mesopore distribution of the aerogels depend both on the dispersion of the parent hydrogel and on the behaviour of each polymer in the drying treatment. Aerogels which retain the dispersion of the parent hydrogel are mainly macroporous (pores larger than 50
nm) while materials liable to shrink upon solvent exchange form mesoporous structures.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2011.01.040</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>adsorption ; Adsorption enthalpy ; Aerogel ; Agar ; Alginate ; alginates ; Applied sciences ; Carrageenan ; Chemical Sciences ; Chitin ; Chitosan ; Comparison plots ; Condensed Matter ; drying ; enthalpy ; Exact sciences and technology ; hydrocolloids ; kappa carrageenan ; Material chemistry ; Materials Science ; Natural polymers ; nitrogen ; Physicochemistry of polymers ; Physics ; Physisorption ; Polymers ; Polysaccharides ; solvents ; Starch and polysaccharides ; Supercritical drying ; surface area ; Surface polarity</subject><ispartof>Carbohydrate polymers, 2011-04, Vol.85 (1), p.44-53</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573</citedby><cites>FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573</cites><orcidid>0000-0002-2148-7108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24095367$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00573148$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Robitzer, M.</creatorcontrib><creatorcontrib>Tourrette, A.</creatorcontrib><creatorcontrib>Horga, R.</creatorcontrib><creatorcontrib>Valentin, R.</creatorcontrib><creatorcontrib>Boissière, M.</creatorcontrib><creatorcontrib>Devoisselle, J.M.</creatorcontrib><creatorcontrib>Di Renzo, F.</creatorcontrib><creatorcontrib>Quignard, F.</creatorcontrib><title>Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels</title><title>Carbohydrate polymers</title><description>Supercritically dried aerogels of several polysaccharides (chitin, chitosan, alginate, alginic acid, κ-carrageenan, and agar) have been characterised by physisorption of N
2. Surface areas as high as 570
m
2
g
−1 have been measured. The nature of the functional groups of the polysaccharide significantly influences the adsorption of N
2 on the surface of the aerogel. The net enthalpy of adsorption increases with the polarity of the surface groups of the polymer, in the order chitin
<
agar
≤
chitosan
<
carrageenan
<
alginic acid
∼
alginate. The surface area and the mesopore distribution of the aerogels depend both on the dispersion of the parent hydrogel and on the behaviour of each polymer in the drying treatment. Aerogels which retain the dispersion of the parent hydrogel are mainly macroporous (pores larger than 50
nm) while materials liable to shrink upon solvent exchange form mesoporous structures.</description><subject>adsorption</subject><subject>Adsorption enthalpy</subject><subject>Aerogel</subject><subject>Agar</subject><subject>Alginate</subject><subject>alginates</subject><subject>Applied sciences</subject><subject>Carrageenan</subject><subject>Chemical Sciences</subject><subject>Chitin</subject><subject>Chitosan</subject><subject>Comparison plots</subject><subject>Condensed Matter</subject><subject>drying</subject><subject>enthalpy</subject><subject>Exact sciences and technology</subject><subject>hydrocolloids</subject><subject>kappa carrageenan</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Natural polymers</subject><subject>nitrogen</subject><subject>Physicochemistry of polymers</subject><subject>Physics</subject><subject>Physisorption</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>solvents</subject><subject>Starch and polysaccharides</subject><subject>Supercritical drying</subject><subject>surface area</subject><subject>Surface polarity</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1L7DAUhoMoOH78BDEbFy46npOmabMSkesHDLpQ1-FMJnEy1MmQFMF_b3orbg2BQPK8bw4PY2cIcwRUV5u5pbTcxX4uAHEOZUvYYzPsWl1hLeU-mwFKWXUK20N2lPMGylIIM_b8FIYU392W55h2Q4hbTpkTH2LsuY-JD2vH7ZoS2cGlkOk_Ej0v331lsuNTWDlObmzp8wk78NRnd_pzHrO3u3-vtw_V4vn-8fZmUVkp5VAJZUUtpNIC68Z30K4camtbQUp4pbUXpdoutdIdoaoFgFtKTYid0Bqatj5ml1PvmnqzS-GD0peJFMzDzcKMdzBSKLtPLGwzsTbFnJPzvwEEMxo0G_Nj0IwGDZQtoeQuptyOsqXeJ9rakH_DQoJuajXOcj5xnqKh92LJvL2UIlUkN8WzLsT1RBRD7jO4ZLINbmvdKiRnB7OK4Y9ZvgEJgpFS</recordid><startdate>20110422</startdate><enddate>20110422</enddate><creator>Robitzer, M.</creator><creator>Tourrette, A.</creator><creator>Horga, R.</creator><creator>Valentin, R.</creator><creator>Boissière, M.</creator><creator>Devoisselle, J.M.</creator><creator>Di Renzo, F.</creator><creator>Quignard, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2148-7108</orcidid></search><sort><creationdate>20110422</creationdate><title>Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels</title><author>Robitzer, M. ; Tourrette, A. ; Horga, R. ; Valentin, R. ; Boissière, M. ; Devoisselle, J.M. ; Di Renzo, F. ; Quignard, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>adsorption</topic><topic>Adsorption enthalpy</topic><topic>Aerogel</topic><topic>Agar</topic><topic>Alginate</topic><topic>alginates</topic><topic>Applied sciences</topic><topic>Carrageenan</topic><topic>Chemical Sciences</topic><topic>Chitin</topic><topic>Chitosan</topic><topic>Comparison plots</topic><topic>Condensed Matter</topic><topic>drying</topic><topic>enthalpy</topic><topic>Exact sciences and technology</topic><topic>hydrocolloids</topic><topic>kappa carrageenan</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Natural polymers</topic><topic>nitrogen</topic><topic>Physicochemistry of polymers</topic><topic>Physics</topic><topic>Physisorption</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>solvents</topic><topic>Starch and polysaccharides</topic><topic>Supercritical drying</topic><topic>surface area</topic><topic>Surface polarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robitzer, M.</creatorcontrib><creatorcontrib>Tourrette, A.</creatorcontrib><creatorcontrib>Horga, R.</creatorcontrib><creatorcontrib>Valentin, R.</creatorcontrib><creatorcontrib>Boissière, M.</creatorcontrib><creatorcontrib>Devoisselle, J.M.</creatorcontrib><creatorcontrib>Di Renzo, F.</creatorcontrib><creatorcontrib>Quignard, F.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robitzer, M.</au><au>Tourrette, A.</au><au>Horga, R.</au><au>Valentin, R.</au><au>Boissière, M.</au><au>Devoisselle, J.M.</au><au>Di Renzo, F.</au><au>Quignard, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels</atitle><jtitle>Carbohydrate polymers</jtitle><date>2011-04-22</date><risdate>2011</risdate><volume>85</volume><issue>1</issue><spage>44</spage><epage>53</epage><pages>44-53</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>Supercritically dried aerogels of several polysaccharides (chitin, chitosan, alginate, alginic acid, κ-carrageenan, and agar) have been characterised by physisorption of N
2. Surface areas as high as 570
m
2
g
−1 have been measured. The nature of the functional groups of the polysaccharide significantly influences the adsorption of N
2 on the surface of the aerogel. The net enthalpy of adsorption increases with the polarity of the surface groups of the polymer, in the order chitin
<
agar
≤
chitosan
<
carrageenan
<
alginic acid
∼
alginate. The surface area and the mesopore distribution of the aerogels depend both on the dispersion of the parent hydrogel and on the behaviour of each polymer in the drying treatment. Aerogels which retain the dispersion of the parent hydrogel are mainly macroporous (pores larger than 50
nm) while materials liable to shrink upon solvent exchange form mesoporous structures.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbpol.2011.01.040</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2148-7108</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2011-04, Vol.85 (1), p.44-53 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00573148v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | adsorption Adsorption enthalpy Aerogel Agar Alginate alginates Applied sciences Carrageenan Chemical Sciences Chitin Chitosan Comparison plots Condensed Matter drying enthalpy Exact sciences and technology hydrocolloids kappa carrageenan Material chemistry Materials Science Natural polymers nitrogen Physicochemistry of polymers Physics Physisorption Polymers Polysaccharides solvents Starch and polysaccharides Supercritical drying surface area Surface polarity |
title | Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20sorption%20as%20a%20tool%20for%20the%20characterisation%20of%20polysaccharide%20aerogels&rft.jtitle=Carbohydrate%20polymers&rft.au=Robitzer,%20M.&rft.date=2011-04-22&rft.volume=85&rft.issue=1&rft.spage=44&rft.epage=53&rft.pages=44-53&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2011.01.040&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00573148v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-26c2324692135f807de19cc72a62f699f2acccb9698a163200eb49a1182990573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |