Loading…
The circlet transform: A robust tool for detecting features with circular shapes
We present a novel method for detecting circles on digital images. This transform is called the circlet transform and can be seen as an extension of classical 1D wavelets to 2D; each basic element is a circle convolved by a 1D oscillating function. In comparison with other circle-detector methods, m...
Saved in:
Published in: | Computers & geosciences 2011-03, Vol.37 (3), p.331-342 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a novel method for detecting circles on digital images. This transform is called the
circlet transform and can be seen as an extension of classical 1D wavelets to 2D; each basic element is a circle convolved by a 1D oscillating function. In comparison with other circle-detector methods, mainly the Hough transform, the
circlet transform takes into account the finite frequency aspect of the data; a circular shape is not restricted to a circle but has a certain width. The transform operates directly on image gradient and does not need further binary segmentation. The implementation is efficient as it consists of a few fast Fourier transforms. The
circlet transform is coupled with a soft-thresholding process and applied to a series of real images from different fields: ophthalmology, astronomy and oceanography. The results show the effectiveness of the method to deal with real images with blurry edges. |
---|---|
ISSN: | 0098-3004 1873-7803 |
DOI: | 10.1016/j.cageo.2010.05.009 |