Loading…
The homological torsion of PSL_2 of the imaginary quadratic integers
Bianchi groups are the groups (P) \mathrm {SL_2}torsion subcomplex reduction, to obtain these invariants. We use it to explicitly compute the integral group homology of the Bianchi groups.
Saved in:
Published in: | Transactions of the American Mathematical Society 2013-03, Vol.365 (3), p.1603-1635 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a250x-1a5fd7d3e25a23e9450e3e9940901bd09c26d8df8d7f6809b3e338ab1ab57af23 |
---|---|
cites | |
container_end_page | 1635 |
container_issue | 3 |
container_start_page | 1603 |
container_title | Transactions of the American Mathematical Society |
container_volume | 365 |
creator | RAHM, ALEXANDER D. |
description | Bianchi groups are the groups (P) \mathrm {SL_2}torsion subcomplex reduction, to obtain these invariants. We use it to explicitly compute the integral group homology of the Bianchi groups. |
doi_str_mv | 10.1090/S0002-9947-2012-05690-X |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00578383v4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23513457</jstor_id><sourcerecordid>23513457</sourcerecordid><originalsourceid>FETCH-LOGICAL-a250x-1a5fd7d3e25a23e9450e3e9940901bd09c26d8df8d7f6809b3e338ab1ab57af23</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKc_QeytF9GTpGmSyzE_JhQUNmF3IW3TraNbNKni_r3pKrv26ny97-GcB6EbAncEFNzPAYBipVKBKRCKgWcK8PIEjQhIiTPJ4RSNjqJzdBHCJpaQymyEHhZrm6zd1rVu1ZSmTTrnQ-N2iauTt3muaZ90UdNszarZGb9PPr9M5U3XlEmz6-zK-nCJzmrTBnv1F8fo_elxMZ3h_PX5ZTrJsaEcfjAxvK5ExSzlhjKrUg42BpXGN0hRgSppVsmqlpWoMwmqYJYxaQpiCi5MTdkY3Q5716bVHz6e5PfamUbPJrnuewBcSCbZdxq1YtCW3oXgbX00ENA9OH0Ap3smugenD-D0MjqvB-cmRBhHG2WcsJSLOKfD3GzDv5f-AtpoeJI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The homological torsion of PSL_2 of the imaginary quadratic integers</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications</source><creator>RAHM, ALEXANDER D.</creator><creatorcontrib>RAHM, ALEXANDER D.</creatorcontrib><description>Bianchi groups are the groups (P) \mathrm {SL_2}torsion subcomplex reduction, to obtain these invariants. We use it to explicitly compute the integral group homology of the Bianchi groups.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/S0002-9947-2012-05690-X</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>K-Theory and Homology ; Mathematics</subject><ispartof>Transactions of the American Mathematical Society, 2013-03, Vol.365 (3), p.1603-1635</ispartof><rights>Copyright 2012, American Mathematical Society</rights><rights>2013 American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a250x-1a5fd7d3e25a23e9450e3e9940901bd09c26d8df8d7f6809b3e338ab1ab57af23</citedby><orcidid>0000-0002-5534-2716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9947-2012-05690-XS0002-9947-2012-05690-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9947-2012-05690-X$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,230,314,780,784,885,23328,27924,27925,58238,58471,77836,77846</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00578383$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>RAHM, ALEXANDER D.</creatorcontrib><title>The homological torsion of PSL_2 of the imaginary quadratic integers</title><title>Transactions of the American Mathematical Society</title><description>Bianchi groups are the groups (P) \mathrm {SL_2}torsion subcomplex reduction, to obtain these invariants. We use it to explicitly compute the integral group homology of the Bianchi groups.</description><subject>K-Theory and Homology</subject><subject>Mathematics</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkF1LwzAUhoMoOKc_QeytF9GTpGmSyzE_JhQUNmF3IW3TraNbNKni_r3pKrv26ny97-GcB6EbAncEFNzPAYBipVKBKRCKgWcK8PIEjQhIiTPJ4RSNjqJzdBHCJpaQymyEHhZrm6zd1rVu1ZSmTTrnQ-N2iauTt3muaZ90UdNszarZGb9PPr9M5U3XlEmz6-zK-nCJzmrTBnv1F8fo_elxMZ3h_PX5ZTrJsaEcfjAxvK5ExSzlhjKrUg42BpXGN0hRgSppVsmqlpWoMwmqYJYxaQpiCi5MTdkY3Q5716bVHz6e5PfamUbPJrnuewBcSCbZdxq1YtCW3oXgbX00ENA9OH0Ap3smugenD-D0MjqvB-cmRBhHG2WcsJSLOKfD3GzDv5f-AtpoeJI</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>RAHM, ALEXANDER D.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5534-2716</orcidid></search><sort><creationdate>20130301</creationdate><title>The homological torsion of PSL_2 of the imaginary quadratic integers</title><author>RAHM, ALEXANDER D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a250x-1a5fd7d3e25a23e9450e3e9940901bd09c26d8df8d7f6809b3e338ab1ab57af23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>K-Theory and Homology</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RAHM, ALEXANDER D.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RAHM, ALEXANDER D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The homological torsion of PSL_2 of the imaginary quadratic integers</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>365</volume><issue>3</issue><spage>1603</spage><epage>1635</epage><pages>1603-1635</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Bianchi groups are the groups (P) \mathrm {SL_2}torsion subcomplex reduction, to obtain these invariants. We use it to explicitly compute the integral group homology of the Bianchi groups.</abstract><pub>American Mathematical Society</pub><doi>10.1090/S0002-9947-2012-05690-X</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-5534-2716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2013-03, Vol.365 (3), p.1603-1635 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00578383v4 |
source | JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications |
subjects | K-Theory and Homology Mathematics |
title | The homological torsion of PSL_2 of the imaginary quadratic integers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20homological%20torsion%20of%20PSL_2%20of%20the%20imaginary%20quadratic%20integers&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=RAHM,%20ALEXANDER%20D.&rft.date=2013-03-01&rft.volume=365&rft.issue=3&rft.spage=1603&rft.epage=1635&rft.pages=1603-1635&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/S0002-9947-2012-05690-X&rft_dat=%3Cjstor_hal_p%3E23513457%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a250x-1a5fd7d3e25a23e9450e3e9940901bd09c26d8df8d7f6809b3e338ab1ab57af23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23513457&rfr_iscdi=true |