Loading…

Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics

In this paper, we show that a pure single phase by doping Fe-site of BiFeO3 (BFO) using tetravalent Zr4+ ions can be achieved by introducing cation (Bi3+) vacancies. The structural analysis reveals that the ferroelectric nature of BFO should be weakly affected by 10% of Zr4+ doping as the c/a ratio...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2010-03, Vol.96 (10)
Main Authors: Wei, Jie, Haumont, Raphael, Jarrier, Romain, Berhtet, Patrik, Dkhil, Brahim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we show that a pure single phase by doping Fe-site of BiFeO3 (BFO) using tetravalent Zr4+ ions can be achieved by introducing cation (Bi3+) vacancies. The structural analysis reveals that the ferroelectric nature of BFO should be weakly affected by 10% of Zr4+ doping as the c/a ratio and the Curie temperature TC remain roughly unchanged compared to that of pure BFO. In contrast, the magnetic properties are affected as a weak ferromagnetism and a change of Néel temperature TN are observed. Beyond the double-exchange interactions arising from the creation of Fe2+, we propose another simple model inducing a local ferromagnetic coupling rather than an antiferromagnetic which considers the replacement of the magnetically active Fe3+, time to time, by a nonactive Zr4+.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.3327885