Loading…

Stability to weak dissipative Bresse system

In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is si...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2011-02, Vol.374 (2), p.481-498
Main Authors: Alabau Boussouira, Fatiha, Muñoz Rivera, Jaime E., Almeida Júnior, Dilberto da S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3
cites cdi_FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3
container_end_page 498
container_issue 2
container_start_page 481
container_title Journal of mathematical analysis and applications
container_volume 374
creator Alabau Boussouira, Fatiha
Muñoz Rivera, Jaime E.
Almeida Júnior, Dilberto da S.
description In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is significative only from the mathematical point of view since in practice the velocities of waves propagations are always different. In that direction we show that when the velocities are not the same, the system is not exponentially stable and we prove that the solution in this case goes to zero polynomially, with rates that can be improved by taking more regular initial data. Finally, we give some numerical result to verify our analytical results.
doi_str_mv 10.1016/j.jmaa.2010.07.046
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00594844v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X10006232</els_id><sourcerecordid>oai_HAL_hal_00594844v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-9eBBpnXz0I-BlXfyCBQ8qeAtpMsHU7nZJysr-e1sqe_Q08PI8M8xLyCWFjAItbpusWWudMRgCKDMQxRGZUZBFChXlx2QGwFjKRPl5Ss5ibAAozUs6Izdvva596_t90nfJD-rvxPoY_Vb3fofJfcAYMYn72OP6nJw43Ua8-Jtz8vH48L58TlevTy_LxSo1Aqo-RSu1NCVWUNTAHUORSyOrnDLJjWYVsyV12hZSuBKscxyZrUG6Gm2teY18Tq6nvV-6Vdvg1zrsVae9el6s1JgB5FJUQuzowLKJNaGLMaA7CBTUWI1q1FiNGqtRUKqhmkG6mqStjka3LuiN8fFgMi45g2Lk7iYOh293HoOKxuPGoPUBTa9s5_878wsWxnk9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability to weak dissipative Bresse system</title><source>ScienceDirect Freedom Collection</source><creator>Alabau Boussouira, Fatiha ; Muñoz Rivera, Jaime E. ; Almeida Júnior, Dilberto da S.</creator><creatorcontrib>Alabau Boussouira, Fatiha ; Muñoz Rivera, Jaime E. ; Almeida Júnior, Dilberto da S.</creatorcontrib><description>In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is significative only from the mathematical point of view since in practice the velocities of waves propagations are always different. In that direction we show that when the velocities are not the same, the system is not exponentially stable and we prove that the solution in this case goes to zero polynomially, with rates that can be improved by taking more regular initial data. Finally, we give some numerical result to verify our analytical results.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2010.07.046</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Analysis of PDEs ; Bresse system ; Exact sciences and technology ; Finite difference ; Global analysis, analysis on manifolds ; Group theory ; Group theory and generalizations ; Lack of exponential decay ; Mathematical analysis ; Mathematics ; Optimization and Control ; Sciences and techniques of general use ; Semigroups ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Journal of mathematical analysis and applications, 2011-02, Vol.374 (2), p.481-498</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3</citedby><cites>FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23932066$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00594844$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alabau Boussouira, Fatiha</creatorcontrib><creatorcontrib>Muñoz Rivera, Jaime E.</creatorcontrib><creatorcontrib>Almeida Júnior, Dilberto da S.</creatorcontrib><title>Stability to weak dissipative Bresse system</title><title>Journal of mathematical analysis and applications</title><description>In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is significative only from the mathematical point of view since in practice the velocities of waves propagations are always different. In that direction we show that when the velocities are not the same, the system is not exponentially stable and we prove that the solution in this case goes to zero polynomially, with rates that can be improved by taking more regular initial data. Finally, we give some numerical result to verify our analytical results.</description><subject>Analysis of PDEs</subject><subject>Bresse system</subject><subject>Exact sciences and technology</subject><subject>Finite difference</subject><subject>Global analysis, analysis on manifolds</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Lack of exponential decay</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Optimization and Control</subject><subject>Sciences and techniques of general use</subject><subject>Semigroups</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-9eBBpnXz0I-BlXfyCBQ8qeAtpMsHU7nZJysr-e1sqe_Q08PI8M8xLyCWFjAItbpusWWudMRgCKDMQxRGZUZBFChXlx2QGwFjKRPl5Ss5ibAAozUs6Izdvva596_t90nfJD-rvxPoY_Vb3fofJfcAYMYn72OP6nJw43Ua8-Jtz8vH48L58TlevTy_LxSo1Aqo-RSu1NCVWUNTAHUORSyOrnDLJjWYVsyV12hZSuBKscxyZrUG6Gm2teY18Tq6nvV-6Vdvg1zrsVae9el6s1JgB5FJUQuzowLKJNaGLMaA7CBTUWI1q1FiNGqtRUKqhmkG6mqStjka3LuiN8fFgMi45g2Lk7iYOh293HoOKxuPGoPUBTa9s5_878wsWxnk9</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Alabau Boussouira, Fatiha</creator><creator>Muñoz Rivera, Jaime E.</creator><creator>Almeida Júnior, Dilberto da S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20110215</creationdate><title>Stability to weak dissipative Bresse system</title><author>Alabau Boussouira, Fatiha ; Muñoz Rivera, Jaime E. ; Almeida Júnior, Dilberto da S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis of PDEs</topic><topic>Bresse system</topic><topic>Exact sciences and technology</topic><topic>Finite difference</topic><topic>Global analysis, analysis on manifolds</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Lack of exponential decay</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Optimization and Control</topic><topic>Sciences and techniques of general use</topic><topic>Semigroups</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alabau Boussouira, Fatiha</creatorcontrib><creatorcontrib>Muñoz Rivera, Jaime E.</creatorcontrib><creatorcontrib>Almeida Júnior, Dilberto da S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alabau Boussouira, Fatiha</au><au>Muñoz Rivera, Jaime E.</au><au>Almeida Júnior, Dilberto da S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability to weak dissipative Bresse system</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2011-02-15</date><risdate>2011</risdate><volume>374</volume><issue>2</issue><spage>481</spage><epage>498</epage><pages>481-498</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is significative only from the mathematical point of view since in practice the velocities of waves propagations are always different. In that direction we show that when the velocities are not the same, the system is not exponentially stable and we prove that the solution in this case goes to zero polynomially, with rates that can be improved by taking more regular initial data. Finally, we give some numerical result to verify our analytical results.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2010.07.046</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2011-02, Vol.374 (2), p.481-498
issn 0022-247X
1096-0813
language eng
recordid cdi_hal_primary_oai_HAL_hal_00594844v1
source ScienceDirect Freedom Collection
subjects Analysis of PDEs
Bresse system
Exact sciences and technology
Finite difference
Global analysis, analysis on manifolds
Group theory
Group theory and generalizations
Lack of exponential decay
Mathematical analysis
Mathematics
Optimization and Control
Sciences and techniques of general use
Semigroups
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Stability to weak dissipative Bresse system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20to%20weak%20dissipative%20Bresse%20system&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Alabau%20Boussouira,%20Fatiha&rft.date=2011-02-15&rft.volume=374&rft.issue=2&rft.spage=481&rft.epage=498&rft.pages=481-498&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1016/j.jmaa.2010.07.046&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00594844v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true