Loading…
Stability to weak dissipative Bresse system
In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is si...
Saved in:
Published in: | Journal of mathematical analysis and applications 2011-02, Vol.374 (2), p.481-498 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3 |
container_end_page | 498 |
container_issue | 2 |
container_start_page | 481 |
container_title | Journal of mathematical analysis and applications |
container_volume | 374 |
creator | Alabau Boussouira, Fatiha Muñoz Rivera, Jaime E. Almeida Júnior, Dilberto da S. |
description | In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is significative only from the mathematical point of view since in practice the velocities of waves propagations are always different. In that direction we show that when the velocities are not the same, the system is not exponentially stable and we prove that the solution in this case goes to zero polynomially, with rates that can be improved by taking more regular initial data. Finally, we give some numerical result to verify our analytical results. |
doi_str_mv | 10.1016/j.jmaa.2010.07.046 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00594844v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X10006232</els_id><sourcerecordid>oai_HAL_hal_00594844v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-9eBBpnXz0I-BlXfyCBQ8qeAtpMsHU7nZJysr-e1sqe_Q08PI8M8xLyCWFjAItbpusWWudMRgCKDMQxRGZUZBFChXlx2QGwFjKRPl5Ss5ibAAozUs6Izdvva596_t90nfJD-rvxPoY_Vb3fofJfcAYMYn72OP6nJw43Ua8-Jtz8vH48L58TlevTy_LxSo1Aqo-RSu1NCVWUNTAHUORSyOrnDLJjWYVsyV12hZSuBKscxyZrUG6Gm2teY18Tq6nvV-6Vdvg1zrsVae9el6s1JgB5FJUQuzowLKJNaGLMaA7CBTUWI1q1FiNGqtRUKqhmkG6mqStjka3LuiN8fFgMi45g2Lk7iYOh293HoOKxuPGoPUBTa9s5_878wsWxnk9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability to weak dissipative Bresse system</title><source>ScienceDirect Freedom Collection</source><creator>Alabau Boussouira, Fatiha ; Muñoz Rivera, Jaime E. ; Almeida Júnior, Dilberto da S.</creator><creatorcontrib>Alabau Boussouira, Fatiha ; Muñoz Rivera, Jaime E. ; Almeida Júnior, Dilberto da S.</creatorcontrib><description>In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is significative only from the mathematical point of view since in practice the velocities of waves propagations are always different. In that direction we show that when the velocities are not the same, the system is not exponentially stable and we prove that the solution in this case goes to zero polynomially, with rates that can be improved by taking more regular initial data. Finally, we give some numerical result to verify our analytical results.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2010.07.046</identifier><identifier>CODEN: JMANAK</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Analysis of PDEs ; Bresse system ; Exact sciences and technology ; Finite difference ; Global analysis, analysis on manifolds ; Group theory ; Group theory and generalizations ; Lack of exponential decay ; Mathematical analysis ; Mathematics ; Optimization and Control ; Sciences and techniques of general use ; Semigroups ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Journal of mathematical analysis and applications, 2011-02, Vol.374 (2), p.481-498</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3</citedby><cites>FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23932066$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00594844$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alabau Boussouira, Fatiha</creatorcontrib><creatorcontrib>Muñoz Rivera, Jaime E.</creatorcontrib><creatorcontrib>Almeida Júnior, Dilberto da S.</creatorcontrib><title>Stability to weak dissipative Bresse system</title><title>Journal of mathematical analysis and applications</title><description>In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is significative only from the mathematical point of view since in practice the velocities of waves propagations are always different. In that direction we show that when the velocities are not the same, the system is not exponentially stable and we prove that the solution in this case goes to zero polynomially, with rates that can be improved by taking more regular initial data. Finally, we give some numerical result to verify our analytical results.</description><subject>Analysis of PDEs</subject><subject>Bresse system</subject><subject>Exact sciences and technology</subject><subject>Finite difference</subject><subject>Global analysis, analysis on manifolds</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Lack of exponential decay</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Optimization and Control</subject><subject>Sciences and techniques of general use</subject><subject>Semigroups</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-9eBBpnXz0I-BlXfyCBQ8qeAtpMsHU7nZJysr-e1sqe_Q08PI8M8xLyCWFjAItbpusWWudMRgCKDMQxRGZUZBFChXlx2QGwFjKRPl5Ss5ibAAozUs6Izdvva596_t90nfJD-rvxPoY_Vb3fofJfcAYMYn72OP6nJw43Ua8-Jtz8vH48L58TlevTy_LxSo1Aqo-RSu1NCVWUNTAHUORSyOrnDLJjWYVsyV12hZSuBKscxyZrUG6Gm2teY18Tq6nvV-6Vdvg1zrsVae9el6s1JgB5FJUQuzowLKJNaGLMaA7CBTUWI1q1FiNGqtRUKqhmkG6mqStjka3LuiN8fFgMi45g2Lk7iYOh293HoOKxuPGoPUBTa9s5_878wsWxnk9</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Alabau Boussouira, Fatiha</creator><creator>Muñoz Rivera, Jaime E.</creator><creator>Almeida Júnior, Dilberto da S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20110215</creationdate><title>Stability to weak dissipative Bresse system</title><author>Alabau Boussouira, Fatiha ; Muñoz Rivera, Jaime E. ; Almeida Júnior, Dilberto da S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis of PDEs</topic><topic>Bresse system</topic><topic>Exact sciences and technology</topic><topic>Finite difference</topic><topic>Global analysis, analysis on manifolds</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Lack of exponential decay</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Optimization and Control</topic><topic>Sciences and techniques of general use</topic><topic>Semigroups</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alabau Boussouira, Fatiha</creatorcontrib><creatorcontrib>Muñoz Rivera, Jaime E.</creatorcontrib><creatorcontrib>Almeida Júnior, Dilberto da S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alabau Boussouira, Fatiha</au><au>Muñoz Rivera, Jaime E.</au><au>Almeida Júnior, Dilberto da S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability to weak dissipative Bresse system</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2011-02-15</date><risdate>2011</risdate><volume>374</volume><issue>2</issue><spage>481</spage><epage>498</epage><pages>481-498</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><coden>JMANAK</coden><abstract>In this paper we study the Bresse system with frictional dissipation working only on the angle displacement. Our main result is to prove that this dissipative mechanism is enough to stabilize exponentially the whole system provided the velocities of waves propagations are the same. This result is significative only from the mathematical point of view since in practice the velocities of waves propagations are always different. In that direction we show that when the velocities are not the same, the system is not exponentially stable and we prove that the solution in this case goes to zero polynomially, with rates that can be improved by taking more regular initial data. Finally, we give some numerical result to verify our analytical results.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2010.07.046</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2011-02, Vol.374 (2), p.481-498 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00594844v1 |
source | ScienceDirect Freedom Collection |
subjects | Analysis of PDEs Bresse system Exact sciences and technology Finite difference Global analysis, analysis on manifolds Group theory Group theory and generalizations Lack of exponential decay Mathematical analysis Mathematics Optimization and Control Sciences and techniques of general use Semigroups Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Stability to weak dissipative Bresse system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20to%20weak%20dissipative%20Bresse%20system&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Alabau%20Boussouira,%20Fatiha&rft.date=2011-02-15&rft.volume=374&rft.issue=2&rft.spage=481&rft.epage=498&rft.pages=481-498&rft.issn=0022-247X&rft.eissn=1096-0813&rft.coden=JMANAK&rft_id=info:doi/10.1016/j.jmaa.2010.07.046&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00594844v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-ed9a9c7e806b03f2e459c9851293ca282d71fad694f70dff3e2db09fbedba3be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |