Loading…
Regrowth of oxide-embedded amorphous silicon studied with molecular dynamics
Classical molecular dynamics simulations are applied to the study of amorphous silicon regrowth in a nanodevice. A simplified atomistic amorphous nanostructure presenting the main features of a FinFET device is designed. A thermal treatment is used to simulate the annealing of the atomic model. The...
Saved in:
Published in: | Journal of applied physics 2011-06, Vol.109 (12), p.123509-123509-5 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Classical molecular dynamics simulations are applied to the study of amorphous silicon regrowth in a nanodevice. A simplified atomistic amorphous nanostructure presenting the main features of a FinFET device is designed. A thermal treatment is used to simulate the annealing of the atomic model. The structure after annealing is very close to what observed experimentally, with perfect crystal near the silicon seed, an intermediate crystalline layer presenting [111] twins, and an upper terminal region of polysilicon. The comparison with 2D system suggests surface proximity effects that impact the probability to form grains and twins. As a consequence, it seems like the solid phase epitaxy was arrested in the nanostructure. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3596815 |