Loading…
MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE
In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay‐off. Unfortunatel...
Saved in:
Published in: | Mathematical finance 2012-10, Vol.22 (4), p.741-752 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3 |
container_end_page | 752 |
container_issue | 4 |
container_start_page | 741 |
container_title | Mathematical finance |
container_volume | 22 |
creator | Lepinette, Emmanuel |
description | In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay‐off. Unfortunately, if the transaction costs rate does not depend on the number of revisions, the approximation error does not converge to zero as the frequency of revisions tends to infinity. In the present paper, we suggest a modification of Leland’s strategy ensuring that the approximation error vanishes in the limit. |
doi_str_mv | 10.1111/j.1467-9965.2011.00498.x |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00603172v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741226311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3</originalsourceid><addsrcrecordid>eNqNkFFPgzAQxxujiXP6HUh8MD6ALYWWPphINtiIDJKBGp8uBSGCUyZsun17i5g925fr3f1_194fIY1gg6hzUxvEYlwXgtmGiQkxMLaEY-yO0OjQOEYjLBjWCTP5KTrruhorlWXxEbpbxNPAD7ypFnqhG02vEi1Jl27qzZ41P15qrjaJoyR1o1RT5ShxJ2kQR6qYpInW687RSSlXXXHxF8fowffSyVwP41kwcUM9t4Tl6JLyjL5Ih5Kc2pmZE1FkKmBqSVpikb-oVHVKhzhSsJJkmGQ5k1wybtq2ndMxuh7mvsoVrNvqXbZ7aGQFczeEvoYxw5Rw84so7eWgXbfN57boNlA32_ZDfQ-IetFW29Ne5QyqvG26ri3Kw1iCofcWaugthN5C6L2FX29hp9DbAf2uVsX-3xwsXD9QN8XrA191m2J34GX7BoxTbsNTNAPzXq2-eMTA6A9MJYar</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034500031</pqid></control><display><type>article</type><title>MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley-Blackwell Read & Publish Collection</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Lepinette, Emmanuel</creator><creatorcontrib>Lepinette, Emmanuel</creatorcontrib><description>In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay‐off. Unfortunately, if the transaction costs rate does not depend on the number of revisions, the approximation error does not converge to zero as the frequency of revisions tends to infinity. In the present paper, we suggest a modification of Leland’s strategy ensuring that the approximation error vanishes in the limit.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/j.1467-9965.2011.00498.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>approximate hedging ; Approximation ; Black-Scholes formula ; Leland's strategy ; Mathematical models ; Mathematics ; Probability ; Securities markets ; Statistical analysis ; Stochastic models ; Studies ; Transaction costs ; Volatility</subject><ispartof>Mathematical finance, 2012-10, Vol.22 (4), p.741-752</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3</citedby><cites>FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902,33200</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00603172$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lepinette, Emmanuel</creatorcontrib><title>MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE</title><title>Mathematical finance</title><description>In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay‐off. Unfortunately, if the transaction costs rate does not depend on the number of revisions, the approximation error does not converge to zero as the frequency of revisions tends to infinity. In the present paper, we suggest a modification of Leland’s strategy ensuring that the approximation error vanishes in the limit.</description><subject>approximate hedging</subject><subject>Approximation</subject><subject>Black-Scholes formula</subject><subject>Leland's strategy</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Securities markets</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Transaction costs</subject><subject>Volatility</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkFFPgzAQxxujiXP6HUh8MD6ALYWWPphINtiIDJKBGp8uBSGCUyZsun17i5g925fr3f1_194fIY1gg6hzUxvEYlwXgtmGiQkxMLaEY-yO0OjQOEYjLBjWCTP5KTrruhorlWXxEbpbxNPAD7ypFnqhG02vEi1Jl27qzZ41P15qrjaJoyR1o1RT5ShxJ2kQR6qYpInW687RSSlXXXHxF8fowffSyVwP41kwcUM9t4Tl6JLyjL5Ih5Kc2pmZE1FkKmBqSVpikb-oVHVKhzhSsJJkmGQ5k1wybtq2ndMxuh7mvsoVrNvqXbZ7aGQFczeEvoYxw5Rw84so7eWgXbfN57boNlA32_ZDfQ-IetFW29Ne5QyqvG26ri3Kw1iCofcWaugthN5C6L2FX29hp9DbAf2uVsX-3xwsXD9QN8XrA191m2J34GX7BoxTbsNTNAPzXq2-eMTA6A9MJYar</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Lepinette, Emmanuel</creator><general>Blackwell Publishing Inc</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201210</creationdate><title>MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE</title><author>Lepinette, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>approximate hedging</topic><topic>Approximation</topic><topic>Black-Scholes formula</topic><topic>Leland's strategy</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Securities markets</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Transaction costs</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepinette, Emmanuel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepinette, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE</atitle><jtitle>Mathematical finance</jtitle><date>2012-10</date><risdate>2012</risdate><volume>22</volume><issue>4</issue><spage>741</spage><epage>752</epage><pages>741-752</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay‐off. Unfortunately, if the transaction costs rate does not depend on the number of revisions, the approximation error does not converge to zero as the frequency of revisions tends to infinity. In the present paper, we suggest a modification of Leland’s strategy ensuring that the approximation error vanishes in the limit.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1467-9965.2011.00498.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1627 |
ispartof | Mathematical finance, 2012-10, Vol.22 (4), p.741-752 |
issn | 0960-1627 1467-9965 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00603172v1 |
source | EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); Wiley-Blackwell Read & Publish Collection; Business Source Ultimate (EBSCOHost) |
subjects | approximate hedging Approximation Black-Scholes formula Leland's strategy Mathematical models Mathematics Probability Securities markets Statistical analysis Stochastic models Studies Transaction costs Volatility |
title | MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODIFIED%20LELAND'S%20STRATEGY%20FOR%20A%20CONSTANT%20TRANSACTION%20COSTS%20RATE&rft.jtitle=Mathematical%20finance&rft.au=Lepinette,%20Emmanuel&rft.date=2012-10&rft.volume=22&rft.issue=4&rft.spage=741&rft.epage=752&rft.pages=741-752&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/j.1467-9965.2011.00498.x&rft_dat=%3Cproquest_hal_p%3E2741226311%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1034500031&rft_id=info:pmid/&rfr_iscdi=true |