Loading…

MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE

In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay‐off. Unfortunatel...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical finance 2012-10, Vol.22 (4), p.741-752
Main Author: Lepinette, Emmanuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3
cites cdi_FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3
container_end_page 752
container_issue 4
container_start_page 741
container_title Mathematical finance
container_volume 22
creator Lepinette, Emmanuel
description In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay‐off. Unfortunately, if the transaction costs rate does not depend on the number of revisions, the approximation error does not converge to zero as the frequency of revisions tends to infinity. In the present paper, we suggest a modification of Leland’s strategy ensuring that the approximation error vanishes in the limit.
doi_str_mv 10.1111/j.1467-9965.2011.00498.x
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00603172v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741226311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3</originalsourceid><addsrcrecordid>eNqNkFFPgzAQxxujiXP6HUh8MD6ALYWWPphINtiIDJKBGp8uBSGCUyZsun17i5g925fr3f1_194fIY1gg6hzUxvEYlwXgtmGiQkxMLaEY-yO0OjQOEYjLBjWCTP5KTrruhorlWXxEbpbxNPAD7ypFnqhG02vEi1Jl27qzZ41P15qrjaJoyR1o1RT5ShxJ2kQR6qYpInW687RSSlXXXHxF8fowffSyVwP41kwcUM9t4Tl6JLyjL5Ih5Kc2pmZE1FkKmBqSVpikb-oVHVKhzhSsJJkmGQ5k1wybtq2ndMxuh7mvsoVrNvqXbZ7aGQFczeEvoYxw5Rw84so7eWgXbfN57boNlA32_ZDfQ-IetFW29Ne5QyqvG26ri3Kw1iCofcWaugthN5C6L2FX29hp9DbAf2uVsX-3xwsXD9QN8XrA191m2J34GX7BoxTbsNTNAPzXq2-eMTA6A9MJYar</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034500031</pqid></control><display><type>article</type><title>MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Business Source Ultimate (EBSCOHost)</source><creator>Lepinette, Emmanuel</creator><creatorcontrib>Lepinette, Emmanuel</creatorcontrib><description>In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay‐off. Unfortunately, if the transaction costs rate does not depend on the number of revisions, the approximation error does not converge to zero as the frequency of revisions tends to infinity. In the present paper, we suggest a modification of Leland’s strategy ensuring that the approximation error vanishes in the limit.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/j.1467-9965.2011.00498.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>approximate hedging ; Approximation ; Black-Scholes formula ; Leland's strategy ; Mathematical models ; Mathematics ; Probability ; Securities markets ; Statistical analysis ; Stochastic models ; Studies ; Transaction costs ; Volatility</subject><ispartof>Mathematical finance, 2012-10, Vol.22 (4), p.741-752</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3</citedby><cites>FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902,33200</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00603172$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lepinette, Emmanuel</creatorcontrib><title>MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE</title><title>Mathematical finance</title><description>In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay‐off. Unfortunately, if the transaction costs rate does not depend on the number of revisions, the approximation error does not converge to zero as the frequency of revisions tends to infinity. In the present paper, we suggest a modification of Leland’s strategy ensuring that the approximation error vanishes in the limit.</description><subject>approximate hedging</subject><subject>Approximation</subject><subject>Black-Scholes formula</subject><subject>Leland's strategy</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Securities markets</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Transaction costs</subject><subject>Volatility</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkFFPgzAQxxujiXP6HUh8MD6ALYWWPphINtiIDJKBGp8uBSGCUyZsun17i5g925fr3f1_194fIY1gg6hzUxvEYlwXgtmGiQkxMLaEY-yO0OjQOEYjLBjWCTP5KTrruhorlWXxEbpbxNPAD7ypFnqhG02vEi1Jl27qzZ41P15qrjaJoyR1o1RT5ShxJ2kQR6qYpInW687RSSlXXXHxF8fowffSyVwP41kwcUM9t4Tl6JLyjL5Ih5Kc2pmZE1FkKmBqSVpikb-oVHVKhzhSsJJkmGQ5k1wybtq2ndMxuh7mvsoVrNvqXbZ7aGQFczeEvoYxw5Rw84so7eWgXbfN57boNlA32_ZDfQ-IetFW29Ne5QyqvG26ri3Kw1iCofcWaugthN5C6L2FX29hp9DbAf2uVsX-3xwsXD9QN8XrA191m2J34GX7BoxTbsNTNAPzXq2-eMTA6A9MJYar</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Lepinette, Emmanuel</creator><general>Blackwell Publishing Inc</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201210</creationdate><title>MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE</title><author>Lepinette, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>approximate hedging</topic><topic>Approximation</topic><topic>Black-Scholes formula</topic><topic>Leland's strategy</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Securities markets</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Transaction costs</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepinette, Emmanuel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepinette, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE</atitle><jtitle>Mathematical finance</jtitle><date>2012-10</date><risdate>2012</risdate><volume>22</volume><issue>4</issue><spage>741</spage><epage>752</epage><pages>741-752</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>In 1985 Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black–Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay‐off. Unfortunately, if the transaction costs rate does not depend on the number of revisions, the approximation error does not converge to zero as the frequency of revisions tends to infinity. In the present paper, we suggest a modification of Leland’s strategy ensuring that the approximation error vanishes in the limit.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1467-9965.2011.00498.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1627
ispartof Mathematical finance, 2012-10, Vol.22 (4), p.741-752
issn 0960-1627
1467-9965
language eng
recordid cdi_hal_primary_oai_HAL_hal_00603172v1
source EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); Wiley-Blackwell Read & Publish Collection; Business Source Ultimate (EBSCOHost)
subjects approximate hedging
Approximation
Black-Scholes formula
Leland's strategy
Mathematical models
Mathematics
Probability
Securities markets
Statistical analysis
Stochastic models
Studies
Transaction costs
Volatility
title MODIFIED LELAND'S STRATEGY FOR A CONSTANT TRANSACTION COSTS RATE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODIFIED%20LELAND'S%20STRATEGY%20FOR%20A%20CONSTANT%20TRANSACTION%20COSTS%20RATE&rft.jtitle=Mathematical%20finance&rft.au=Lepinette,%20Emmanuel&rft.date=2012-10&rft.volume=22&rft.issue=4&rft.spage=741&rft.epage=752&rft.pages=741-752&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/j.1467-9965.2011.00498.x&rft_dat=%3Cproquest_hal_p%3E2741226311%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4948-a37b3da831c35b2c19ebb2c034a3f09cdebbc35f818a96f1b01bc6a7a672555c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1034500031&rft_id=info:pmid/&rfr_iscdi=true