Loading…
Self-improving properties for abstract Poincaré type inequalities
We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-di...
Saved in:
Published in: | Transactions of the American Mathematical Society 2015-07, Vol.367 (7), p.4793-4835 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3 |
container_end_page | 4835 |
container_issue | 7 |
container_start_page | 4793 |
container_title | Transactions of the American Mathematical Society |
container_volume | 367 |
creator | Bernicot, Frédéric Martell, José María |
description | We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities, and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated
B
M
O
BMO
and Lipschitz spaces of S. Hofmann, S. Mayboroda, and A. McIntosh. |
doi_str_mv | 10.1090/S0002-9947-2014-06315-0 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00607963v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00607963v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3</originalsourceid><addsrcrecordid>eNo9kEtOwzAURS0EEqGwBjJlYHiOHX-GpYIWKRJIhbHlOA4YpUmwQ6UuiXWwMZIWdXT1rs67g4PQNYFbAgru1gCQYaWYwBkQhoFTkmM4QQkBKTGXOZyi5Aido4sYP8cTmOQJul-7psZ-04du69v3dMzehcG7mNZdSE0Zh2DskL50vrUm_P6kw653qW_d17dp_AReorPaNNFd_ecMvT0-vC5WuHhePi3mBbaUwYCVNXlWQglVTq10ILOS2iwXRClSVSBZJgUYXjNR1cCUEI5Y5UQFI5NzsHSGbg67H6bRffAbE3a6M16v5oWeOgAOQnG6JSMrDqwNXYzB1ccHAnrSpvfa9GRET9r0XpsG-gfH5mBU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-improving properties for abstract Poincaré type inequalities</title><source>American Mathematical Society</source><source>JSTOR Archival Journals</source><creator>Bernicot, Frédéric ; Martell, José María</creator><creatorcontrib>Bernicot, Frédéric ; Martell, José María</creatorcontrib><description>We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities, and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated
B
M
O
BMO
and Lipschitz spaces of S. Hofmann, S. Mayboroda, and A. McIntosh.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/S0002-9947-2014-06315-0</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Classical Analysis and ODEs ; Mathematics</subject><ispartof>Transactions of the American Mathematical Society, 2015-07, Vol.367 (7), p.4793-4835</ispartof><rights>Public Domain</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3</citedby><cites>FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00607963$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernicot, Frédéric</creatorcontrib><creatorcontrib>Martell, José María</creatorcontrib><title>Self-improving properties for abstract Poincaré type inequalities</title><title>Transactions of the American Mathematical Society</title><description>We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities, and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated
B
M
O
BMO
and Lipschitz spaces of S. Hofmann, S. Mayboroda, and A. McIntosh.</description><subject>Classical Analysis and ODEs</subject><subject>Mathematics</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAURS0EEqGwBjJlYHiOHX-GpYIWKRJIhbHlOA4YpUmwQ6UuiXWwMZIWdXT1rs67g4PQNYFbAgru1gCQYaWYwBkQhoFTkmM4QQkBKTGXOZyi5Aido4sYP8cTmOQJul-7psZ-04du69v3dMzehcG7mNZdSE0Zh2DskL50vrUm_P6kw653qW_d17dp_AReorPaNNFd_ecMvT0-vC5WuHhePi3mBbaUwYCVNXlWQglVTq10ILOS2iwXRClSVSBZJgUYXjNR1cCUEI5Y5UQFI5NzsHSGbg67H6bRffAbE3a6M16v5oWeOgAOQnG6JSMrDqwNXYzB1ccHAnrSpvfa9GRET9r0XpsG-gfH5mBU</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Bernicot, Frédéric</creator><creator>Martell, José María</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20150701</creationdate><title>Self-improving properties for abstract Poincaré type inequalities</title><author>Bernicot, Frédéric ; Martell, José María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical Analysis and ODEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernicot, Frédéric</creatorcontrib><creatorcontrib>Martell, José María</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernicot, Frédéric</au><au>Martell, José María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-improving properties for abstract Poincaré type inequalities</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>367</volume><issue>7</issue><spage>4793</spage><epage>4835</epage><pages>4793-4835</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities, and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated
B
M
O
BMO
and Lipschitz spaces of S. Hofmann, S. Mayboroda, and A. McIntosh.</abstract><pub>American Mathematical Society</pub><doi>10.1090/S0002-9947-2014-06315-0</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2015-07, Vol.367 (7), p.4793-4835 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00607963v1 |
source | American Mathematical Society; JSTOR Archival Journals |
subjects | Classical Analysis and ODEs Mathematics |
title | Self-improving properties for abstract Poincaré type inequalities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-improving%20properties%20for%20abstract%20Poincar%C3%A9%20type%20inequalities&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Bernicot,%20Fr%C3%A9d%C3%A9ric&rft.date=2015-07-01&rft.volume=367&rft.issue=7&rft.spage=4793&rft.epage=4835&rft.pages=4793-4835&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/S0002-9947-2014-06315-0&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00607963v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |