Loading…

Self-improving properties for abstract Poincaré type inequalities

We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-di...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of the American Mathematical Society 2015-07, Vol.367 (7), p.4793-4835
Main Authors: Bernicot, Frédéric, Martell, José María
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3
cites cdi_FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3
container_end_page 4835
container_issue 7
container_start_page 4793
container_title Transactions of the American Mathematical Society
container_volume 367
creator Bernicot, Frédéric
Martell, José María
description We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities, and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated B M O BMO and Lipschitz spaces of S. Hofmann, S. Mayboroda, and A. McIntosh.
doi_str_mv 10.1090/S0002-9947-2014-06315-0
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00607963v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00607963v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3</originalsourceid><addsrcrecordid>eNo9kEtOwzAURS0EEqGwBjJlYHiOHX-GpYIWKRJIhbHlOA4YpUmwQ6UuiXWwMZIWdXT1rs67g4PQNYFbAgru1gCQYaWYwBkQhoFTkmM4QQkBKTGXOZyi5Aido4sYP8cTmOQJul-7psZ-04du69v3dMzehcG7mNZdSE0Zh2DskL50vrUm_P6kw653qW_d17dp_AReorPaNNFd_ecMvT0-vC5WuHhePi3mBbaUwYCVNXlWQglVTq10ILOS2iwXRClSVSBZJgUYXjNR1cCUEI5Y5UQFI5NzsHSGbg67H6bRffAbE3a6M16v5oWeOgAOQnG6JSMrDqwNXYzB1ccHAnrSpvfa9GRET9r0XpsG-gfH5mBU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-improving properties for abstract Poincaré type inequalities</title><source>American Mathematical Society</source><source>JSTOR Archival Journals</source><creator>Bernicot, Frédéric ; Martell, José María</creator><creatorcontrib>Bernicot, Frédéric ; Martell, José María</creatorcontrib><description>We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities, and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated B M O BMO and Lipschitz spaces of S. Hofmann, S. Mayboroda, and A. McIntosh.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/S0002-9947-2014-06315-0</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Classical Analysis and ODEs ; Mathematics</subject><ispartof>Transactions of the American Mathematical Society, 2015-07, Vol.367 (7), p.4793-4835</ispartof><rights>Public Domain</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3</citedby><cites>FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00607963$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernicot, Frédéric</creatorcontrib><creatorcontrib>Martell, José María</creatorcontrib><title>Self-improving properties for abstract Poincaré type inequalities</title><title>Transactions of the American Mathematical Society</title><description>We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities, and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated B M O BMO and Lipschitz spaces of S. Hofmann, S. Mayboroda, and A. McIntosh.</description><subject>Classical Analysis and ODEs</subject><subject>Mathematics</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAURS0EEqGwBjJlYHiOHX-GpYIWKRJIhbHlOA4YpUmwQ6UuiXWwMZIWdXT1rs67g4PQNYFbAgru1gCQYaWYwBkQhoFTkmM4QQkBKTGXOZyi5Aido4sYP8cTmOQJul-7psZ-04du69v3dMzehcG7mNZdSE0Zh2DskL50vrUm_P6kw653qW_d17dp_AReorPaNNFd_ecMvT0-vC5WuHhePi3mBbaUwYCVNXlWQglVTq10ILOS2iwXRClSVSBZJgUYXjNR1cCUEI5Y5UQFI5NzsHSGbg67H6bRffAbE3a6M16v5oWeOgAOQnG6JSMrDqwNXYzB1ccHAnrSpvfa9GRET9r0XpsG-gfH5mBU</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Bernicot, Frédéric</creator><creator>Martell, José María</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20150701</creationdate><title>Self-improving properties for abstract Poincaré type inequalities</title><author>Bernicot, Frédéric ; Martell, José María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical Analysis and ODEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernicot, Frédéric</creatorcontrib><creatorcontrib>Martell, José María</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernicot, Frédéric</au><au>Martell, José María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-improving properties for abstract Poincaré type inequalities</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>367</volume><issue>7</issue><spage>4793</spage><epage>4835</epage><pages>4793-4835</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We study self-improving properties in the scale of Lebesgue spaces of generalized Poincaré inequalities in the Euclidean space. We present an abstract setting where oscillations are given by certain operators (e.g., approximations of the identity, semigroups or mean value operators) that have off-diagonal decay in some range. Our results provide a unified theory that is applicable to the classical Poincaré inequalities, and furthermore it includes oscillations defined in terms of semigroups associated with second order elliptic operators as those in the Kato conjecture. In this latter situation we obtain a direct proof of the John-Nirenberg inequality for the associated B M O BMO and Lipschitz spaces of S. Hofmann, S. Mayboroda, and A. McIntosh.</abstract><pub>American Mathematical Society</pub><doi>10.1090/S0002-9947-2014-06315-0</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2015-07, Vol.367 (7), p.4793-4835
issn 0002-9947
1088-6850
language eng
recordid cdi_hal_primary_oai_HAL_hal_00607963v1
source American Mathematical Society; JSTOR Archival Journals
subjects Classical Analysis and ODEs
Mathematics
title Self-improving properties for abstract Poincaré type inequalities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-improving%20properties%20for%20abstract%20Poincar%C3%A9%20type%20inequalities&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Bernicot,%20Fr%C3%A9d%C3%A9ric&rft.date=2015-07-01&rft.volume=367&rft.issue=7&rft.spage=4793&rft.epage=4835&rft.pages=4793-4835&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/S0002-9947-2014-06315-0&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00607963v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-9ca52b0b0d53c8e082b3c2571991dd0842870a6f47df04977e1c9e7d0257560c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true