Loading…

Derivation of the shear strength of continuous beams

The elastic—full plastic loading curve is for all materials sufficient to explain the strength of beams and beam columns loaded by bending and compression. This theory is extended for the influence of shear stress, and it is shown to be the only way to explain the combined bending-shear strength fro...

Full description

Saved in:
Bibliographic Details
Published in:European journal of wood and wood products 2011-08, Vol.69 (3), p.421-430
Main Authors: Put, T. A. C. M., Kuilen, J. W. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-b474d569738722f2871f9facbdd1af7ce1d046501ed7dcfc82378e6773e082623
cites cdi_FETCH-LOGICAL-c393t-b474d569738722f2871f9facbdd1af7ce1d046501ed7dcfc82378e6773e082623
container_end_page 430
container_issue 3
container_start_page 421
container_title European journal of wood and wood products
container_volume 69
creator Put, T. A. C. M.
Kuilen, J. W. G.
description The elastic—full plastic loading curve is for all materials sufficient to explain the strength of beams and beam columns loaded by bending and compression. This theory is extended for the influence of shear stress, and it is shown to be the only way to explain the combined bending-shear strength from test results. Also, the in the past derived bearing strength theory is extended here for bracing action. It will be shown for continuous beams as example, that besides moment redistribution by plastic flow in bending, a plastic shear flow mechanism exists that is also able to cause full moment redistribution. The derivations lead to requirements for the design rules and show how the shear stress may reduce the ultimate bending capacity.
doi_str_mv 10.1007/s00107-010-0473-3
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00616902v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410606517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-b474d569738722f2871f9facbdd1af7ce1d046501ed7dcfc82378e6773e082623</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLcFTx6iM0ma7B5L_VOh4EXBW0h3k-6WdlOT3YLf3iwrenIOMzDze4_hEXKNcIcA6j4CICiaGgWhOOVnZIKCS6q4_Dgnk3TOKVcyvySzGHeQiqNgnE-IeLChOZmu8W3mXdbVNou1NSGLXbDttquHbenbrml738dsY80hXpELZ_bRzn7mlLw_Pb4tV3T9-vyyXKxpyQve0Y1QoprLQvFcMeZYrtAVzpSbqkLjVGmxAiHngLZSVenKnHGVW6kUt5AzyfiU3I6-tdnrY2gOJnxpbxq9Wqz1sAOQKAtgJ0zszcgeg__sbez0zvehTe9pJhAkyDmqROFIlcHHGKz7tUXQQ5Z6zFKnpocsNU8aNmpiYtutDX_O_4u-AccIc_M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410606517</pqid></control><display><type>article</type><title>Derivation of the shear strength of continuous beams</title><source>Springer Link</source><creator>Put, T. A. C. M. ; Kuilen, J. W. G.</creator><creatorcontrib>Put, T. A. C. M. ; Kuilen, J. W. G.</creatorcontrib><description>The elastic—full plastic loading curve is for all materials sufficient to explain the strength of beams and beam columns loaded by bending and compression. This theory is extended for the influence of shear stress, and it is shown to be the only way to explain the combined bending-shear strength from test results. Also, the in the past derived bearing strength theory is extended here for bracing action. It will be shown for continuous beams as example, that besides moment redistribution by plastic flow in bending, a plastic shear flow mechanism exists that is also able to cause full moment redistribution. The derivations lead to requirements for the design rules and show how the shear stress may reduce the ultimate bending capacity.</description><identifier>ISSN: 0018-3768</identifier><identifier>EISSN: 1436-736X</identifier><identifier>DOI: 10.1007/s00107-010-0473-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Bearing strength ; Bend strength ; Biomedical and Life Sciences ; Ceramics ; Columns (structural) ; Composites ; Compression ; Compressive strength ; Continuous beams ; Glass ; Life Sciences ; Machines ; Manufacturing ; Natural Materials ; Originals Originalarbeiten ; Plastic flow ; Plastics ; Processes ; Shear flow ; Shear strength ; Shear stress ; Wood Science &amp; Technology</subject><ispartof>European journal of wood and wood products, 2011-08, Vol.69 (3), p.421-430</ispartof><rights>The Author(s) 2010</rights><rights>The Author(s) 2010. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-b474d569738722f2871f9facbdd1af7ce1d046501ed7dcfc82378e6773e082623</citedby><cites>FETCH-LOGICAL-c393t-b474d569738722f2871f9facbdd1af7ce1d046501ed7dcfc82378e6773e082623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00616902$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Put, T. A. C. M.</creatorcontrib><creatorcontrib>Kuilen, J. W. G.</creatorcontrib><title>Derivation of the shear strength of continuous beams</title><title>European journal of wood and wood products</title><addtitle>Eur. J. Wood Prod</addtitle><description>The elastic—full plastic loading curve is for all materials sufficient to explain the strength of beams and beam columns loaded by bending and compression. This theory is extended for the influence of shear stress, and it is shown to be the only way to explain the combined bending-shear strength from test results. Also, the in the past derived bearing strength theory is extended here for bracing action. It will be shown for continuous beams as example, that besides moment redistribution by plastic flow in bending, a plastic shear flow mechanism exists that is also able to cause full moment redistribution. The derivations lead to requirements for the design rules and show how the shear stress may reduce the ultimate bending capacity.</description><subject>Bearing strength</subject><subject>Bend strength</subject><subject>Biomedical and Life Sciences</subject><subject>Ceramics</subject><subject>Columns (structural)</subject><subject>Composites</subject><subject>Compression</subject><subject>Compressive strength</subject><subject>Continuous beams</subject><subject>Glass</subject><subject>Life Sciences</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Natural Materials</subject><subject>Originals Originalarbeiten</subject><subject>Plastic flow</subject><subject>Plastics</subject><subject>Processes</subject><subject>Shear flow</subject><subject>Shear strength</subject><subject>Shear stress</subject><subject>Wood Science &amp; Technology</subject><issn>0018-3768</issn><issn>1436-736X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGo_gLcFTx6iM0ma7B5L_VOh4EXBW0h3k-6WdlOT3YLf3iwrenIOMzDze4_hEXKNcIcA6j4CICiaGgWhOOVnZIKCS6q4_Dgnk3TOKVcyvySzGHeQiqNgnE-IeLChOZmu8W3mXdbVNou1NSGLXbDttquHbenbrml738dsY80hXpELZ_bRzn7mlLw_Pb4tV3T9-vyyXKxpyQve0Y1QoprLQvFcMeZYrtAVzpSbqkLjVGmxAiHngLZSVenKnHGVW6kUt5AzyfiU3I6-tdnrY2gOJnxpbxq9Wqz1sAOQKAtgJ0zszcgeg__sbez0zvehTe9pJhAkyDmqROFIlcHHGKz7tUXQQ5Z6zFKnpocsNU8aNmpiYtutDX_O_4u-AccIc_M</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Put, T. A. C. M.</creator><creator>Kuilen, J. W. G.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110801</creationdate><title>Derivation of the shear strength of continuous beams</title><author>Put, T. A. C. M. ; Kuilen, J. W. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-b474d569738722f2871f9facbdd1af7ce1d046501ed7dcfc82378e6773e082623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bearing strength</topic><topic>Bend strength</topic><topic>Biomedical and Life Sciences</topic><topic>Ceramics</topic><topic>Columns (structural)</topic><topic>Composites</topic><topic>Compression</topic><topic>Compressive strength</topic><topic>Continuous beams</topic><topic>Glass</topic><topic>Life Sciences</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Natural Materials</topic><topic>Originals Originalarbeiten</topic><topic>Plastic flow</topic><topic>Plastics</topic><topic>Processes</topic><topic>Shear flow</topic><topic>Shear strength</topic><topic>Shear stress</topic><topic>Wood Science &amp; Technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Put, T. A. C. M.</creatorcontrib><creatorcontrib>Kuilen, J. W. G.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of wood and wood products</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Put, T. A. C. M.</au><au>Kuilen, J. W. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of the shear strength of continuous beams</atitle><jtitle>European journal of wood and wood products</jtitle><stitle>Eur. J. Wood Prod</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>69</volume><issue>3</issue><spage>421</spage><epage>430</epage><pages>421-430</pages><issn>0018-3768</issn><eissn>1436-736X</eissn><abstract>The elastic—full plastic loading curve is for all materials sufficient to explain the strength of beams and beam columns loaded by bending and compression. This theory is extended for the influence of shear stress, and it is shown to be the only way to explain the combined bending-shear strength from test results. Also, the in the past derived bearing strength theory is extended here for bracing action. It will be shown for continuous beams as example, that besides moment redistribution by plastic flow in bending, a plastic shear flow mechanism exists that is also able to cause full moment redistribution. The derivations lead to requirements for the design rules and show how the shear stress may reduce the ultimate bending capacity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00107-010-0473-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-3768
ispartof European journal of wood and wood products, 2011-08, Vol.69 (3), p.421-430
issn 0018-3768
1436-736X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00616902v1
source Springer Link
subjects Bearing strength
Bend strength
Biomedical and Life Sciences
Ceramics
Columns (structural)
Composites
Compression
Compressive strength
Continuous beams
Glass
Life Sciences
Machines
Manufacturing
Natural Materials
Originals Originalarbeiten
Plastic flow
Plastics
Processes
Shear flow
Shear strength
Shear stress
Wood Science & Technology
title Derivation of the shear strength of continuous beams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20the%20shear%20strength%20of%20continuous%20beams&rft.jtitle=European%20journal%20of%20wood%20and%20wood%20products&rft.au=Put,%20T.%20A.%20C.%20M.&rft.date=2011-08-01&rft.volume=69&rft.issue=3&rft.spage=421&rft.epage=430&rft.pages=421-430&rft.issn=0018-3768&rft.eissn=1436-736X&rft_id=info:doi/10.1007/s00107-010-0473-3&rft_dat=%3Cproquest_hal_p%3E2410606517%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-b474d569738722f2871f9facbdd1af7ce1d046501ed7dcfc82378e6773e082623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2410606517&rft_id=info:pmid/&rfr_iscdi=true