Loading…
The complexity of dissociation set problems in graphs
A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that th...
Saved in:
Published in: | Discrete Applied Mathematics 2011-08, Vol.159 (13), p.1352-1366 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803 |
---|---|
cites | cdi_FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803 |
container_end_page | 1366 |
container_issue | 13 |
container_start_page | 1352 |
container_title | Discrete Applied Mathematics |
container_volume | 159 |
creator | Orlovich, Yury Dolgui, Alexandre Finke, Gerd Gordon, Valery Werner, Frank |
description | A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several polynomially solvable cases for the problem under consideration. One of them deals with the subclass of the so-called chair-free graphs. Furthermore, the related problem of finding a maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are derived. Finally, we provide inapproximability results for the dissociation set problems mentioned above. |
doi_str_mv | 10.1016/j.dam.2011.04.023 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00617109v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X11001661</els_id><sourcerecordid>896227029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803</originalsourceid><addsrcrecordid>eNp9kD1v2zAQhokiAeom_QHdtBRFByl3JE1K6GQEaVPAQBYP2QiaOtU0JNElZaP-96Frw2MmfuB53zs8jH1BqBBQPWyr1g4VB8QKZAVcfGAzrDUvldZ4w2aZUSXH-vUj-5TSFgAwv2ZsvtpQ4cKw6-mfn45F6IrWpxSct5MPY5FoKnYxrHsaUuHH4k-0u026Z7ed7RN9vpx3bPXzafX4XC5ffv1-XCxLNwc-laoWQmrNeWMF55KEIFh3SlstqeusU7Z10GjdUA3ydBMK1ihFjXLe1iDu2Pdz7cb2Zhf9YOPRBOvN82JpTn8ACjVCc8DMfjuzedu_e0qTGXxy1Pd2pLBPpm4U5xp4k0k8ky6GlCJ112oEc5JptibLNCeZBqTJMnPm66XdJmf7LtrR-XQNcimEwv_cjzNH2crBUzTJeRodtT6Sm0wb_DtT3gDj1oaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896227029</pqid></control><display><type>article</type><title>The complexity of dissociation set problems in graphs</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Orlovich, Yury ; Dolgui, Alexandre ; Finke, Gerd ; Gordon, Valery ; Werner, Frank</creator><creatorcontrib>Orlovich, Yury ; Dolgui, Alexandre ; Finke, Gerd ; Gordon, Valery ; Werner, Frank</creatorcontrib><description>A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several polynomially solvable cases for the problem under consideration. One of them deals with the subclass of the so-called chair-free graphs. Furthermore, the related problem of finding a maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are derived. Finally, we provide inapproximability results for the dissociation set problems mentioned above.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2011.04.023</identifier><identifier>CODEN: DAMADU</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximability ; Combinatorics ; Combinatorics. Ordered structures ; Complexity ; Computational complexity ; Computer Science ; Computer science; control theory; systems ; Dissociation set ; Exact sciences and technology ; Forbidden induced subgraph ; Graphs ; Inclusions ; Information retrieval. Graph ; Mathematical analysis ; Mathematics ; Operations Research ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Discrete Applied Mathematics, 2011-08, Vol.159 (13), p.1352-1366</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803</citedby><cites>FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803</cites><orcidid>0000-0003-0527-4716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24336123$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00617109$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Orlovich, Yury</creatorcontrib><creatorcontrib>Dolgui, Alexandre</creatorcontrib><creatorcontrib>Finke, Gerd</creatorcontrib><creatorcontrib>Gordon, Valery</creatorcontrib><creatorcontrib>Werner, Frank</creatorcontrib><title>The complexity of dissociation set problems in graphs</title><title>Discrete Applied Mathematics</title><description>A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several polynomially solvable cases for the problem under consideration. One of them deals with the subclass of the so-called chair-free graphs. Furthermore, the related problem of finding a maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are derived. Finally, we provide inapproximability results for the dissociation set problems mentioned above.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximability</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Dissociation set</subject><subject>Exact sciences and technology</subject><subject>Forbidden induced subgraph</subject><subject>Graphs</subject><subject>Inclusions</subject><subject>Information retrieval. Graph</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operations Research</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1v2zAQhokiAeom_QHdtBRFByl3JE1K6GQEaVPAQBYP2QiaOtU0JNElZaP-96Frw2MmfuB53zs8jH1BqBBQPWyr1g4VB8QKZAVcfGAzrDUvldZ4w2aZUSXH-vUj-5TSFgAwv2ZsvtpQ4cKw6-mfn45F6IrWpxSct5MPY5FoKnYxrHsaUuHH4k-0u026Z7ed7RN9vpx3bPXzafX4XC5ffv1-XCxLNwc-laoWQmrNeWMF55KEIFh3SlstqeusU7Z10GjdUA3ydBMK1ihFjXLe1iDu2Pdz7cb2Zhf9YOPRBOvN82JpTn8ACjVCc8DMfjuzedu_e0qTGXxy1Pd2pLBPpm4U5xp4k0k8ky6GlCJ112oEc5JptibLNCeZBqTJMnPm66XdJmf7LtrR-XQNcimEwv_cjzNH2crBUzTJeRodtT6Sm0wb_DtT3gDj1oaw</recordid><startdate>20110806</startdate><enddate>20110806</enddate><creator>Orlovich, Yury</creator><creator>Dolgui, Alexandre</creator><creator>Finke, Gerd</creator><creator>Gordon, Valery</creator><creator>Werner, Frank</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0527-4716</orcidid></search><sort><creationdate>20110806</creationdate><title>The complexity of dissociation set problems in graphs</title><author>Orlovich, Yury ; Dolgui, Alexandre ; Finke, Gerd ; Gordon, Valery ; Werner, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximability</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Dissociation set</topic><topic>Exact sciences and technology</topic><topic>Forbidden induced subgraph</topic><topic>Graphs</topic><topic>Inclusions</topic><topic>Information retrieval. Graph</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operations Research</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlovich, Yury</creatorcontrib><creatorcontrib>Dolgui, Alexandre</creatorcontrib><creatorcontrib>Finke, Gerd</creatorcontrib><creatorcontrib>Gordon, Valery</creatorcontrib><creatorcontrib>Werner, Frank</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlovich, Yury</au><au>Dolgui, Alexandre</au><au>Finke, Gerd</au><au>Gordon, Valery</au><au>Werner, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The complexity of dissociation set problems in graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2011-08-06</date><risdate>2011</risdate><volume>159</volume><issue>13</issue><spage>1352</spage><epage>1366</epage><pages>1352-1366</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><coden>DAMADU</coden><abstract>A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several polynomially solvable cases for the problem under consideration. One of them deals with the subclass of the so-called chair-free graphs. Furthermore, the related problem of finding a maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are derived. Finally, we provide inapproximability results for the dissociation set problems mentioned above.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2011.04.023</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0527-4716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2011-08, Vol.159 (13), p.1352-1366 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00617109v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Approximability Combinatorics Combinatorics. Ordered structures Complexity Computational complexity Computer Science Computer science control theory systems Dissociation set Exact sciences and technology Forbidden induced subgraph Graphs Inclusions Information retrieval. Graph Mathematical analysis Mathematics Operations Research Sciences and techniques of general use Theoretical computing |
title | The complexity of dissociation set problems in graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20complexity%20of%20dissociation%20set%20problems%20in%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Orlovich,%20Yury&rft.date=2011-08-06&rft.volume=159&rft.issue=13&rft.spage=1352&rft.epage=1366&rft.pages=1352-1366&rft.issn=0166-218X&rft.eissn=1872-6771&rft.coden=DAMADU&rft_id=info:doi/10.1016/j.dam.2011.04.023&rft_dat=%3Cproquest_hal_p%3E896227029%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896227029&rft_id=info:pmid/&rfr_iscdi=true |