Loading…

The complexity of dissociation set problems in graphs

A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that th...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2011-08, Vol.159 (13), p.1352-1366
Main Authors: Orlovich, Yury, Dolgui, Alexandre, Finke, Gerd, Gordon, Valery, Werner, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803
cites cdi_FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803
container_end_page 1366
container_issue 13
container_start_page 1352
container_title Discrete Applied Mathematics
container_volume 159
creator Orlovich, Yury
Dolgui, Alexandre
Finke, Gerd
Gordon, Valery
Werner, Frank
description A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several polynomially solvable cases for the problem under consideration. One of them deals with the subclass of the so-called chair-free graphs. Furthermore, the related problem of finding a maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are derived. Finally, we provide inapproximability results for the dissociation set problems mentioned above.
doi_str_mv 10.1016/j.dam.2011.04.023
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00617109v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X11001661</els_id><sourcerecordid>896227029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803</originalsourceid><addsrcrecordid>eNp9kD1v2zAQhokiAeom_QHdtBRFByl3JE1K6GQEaVPAQBYP2QiaOtU0JNElZaP-96Frw2MmfuB53zs8jH1BqBBQPWyr1g4VB8QKZAVcfGAzrDUvldZ4w2aZUSXH-vUj-5TSFgAwv2ZsvtpQ4cKw6-mfn45F6IrWpxSct5MPY5FoKnYxrHsaUuHH4k-0u026Z7ed7RN9vpx3bPXzafX4XC5ffv1-XCxLNwc-laoWQmrNeWMF55KEIFh3SlstqeusU7Z10GjdUA3ydBMK1ihFjXLe1iDu2Pdz7cb2Zhf9YOPRBOvN82JpTn8ACjVCc8DMfjuzedu_e0qTGXxy1Pd2pLBPpm4U5xp4k0k8ky6GlCJ112oEc5JptibLNCeZBqTJMnPm66XdJmf7LtrR-XQNcimEwv_cjzNH2crBUzTJeRodtT6Sm0wb_DtT3gDj1oaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896227029</pqid></control><display><type>article</type><title>The complexity of dissociation set problems in graphs</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Orlovich, Yury ; Dolgui, Alexandre ; Finke, Gerd ; Gordon, Valery ; Werner, Frank</creator><creatorcontrib>Orlovich, Yury ; Dolgui, Alexandre ; Finke, Gerd ; Gordon, Valery ; Werner, Frank</creatorcontrib><description>A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several polynomially solvable cases for the problem under consideration. One of them deals with the subclass of the so-called chair-free graphs. Furthermore, the related problem of finding a maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are derived. Finally, we provide inapproximability results for the dissociation set problems mentioned above.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2011.04.023</identifier><identifier>CODEN: DAMADU</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximability ; Combinatorics ; Combinatorics. Ordered structures ; Complexity ; Computational complexity ; Computer Science ; Computer science; control theory; systems ; Dissociation set ; Exact sciences and technology ; Forbidden induced subgraph ; Graphs ; Inclusions ; Information retrieval. Graph ; Mathematical analysis ; Mathematics ; Operations Research ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Discrete Applied Mathematics, 2011-08, Vol.159 (13), p.1352-1366</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803</citedby><cites>FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803</cites><orcidid>0000-0003-0527-4716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24336123$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00617109$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Orlovich, Yury</creatorcontrib><creatorcontrib>Dolgui, Alexandre</creatorcontrib><creatorcontrib>Finke, Gerd</creatorcontrib><creatorcontrib>Gordon, Valery</creatorcontrib><creatorcontrib>Werner, Frank</creatorcontrib><title>The complexity of dissociation set problems in graphs</title><title>Discrete Applied Mathematics</title><description>A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several polynomially solvable cases for the problem under consideration. One of them deals with the subclass of the so-called chair-free graphs. Furthermore, the related problem of finding a maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are derived. Finally, we provide inapproximability results for the dissociation set problems mentioned above.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximability</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Dissociation set</subject><subject>Exact sciences and technology</subject><subject>Forbidden induced subgraph</subject><subject>Graphs</subject><subject>Inclusions</subject><subject>Information retrieval. Graph</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operations Research</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1v2zAQhokiAeom_QHdtBRFByl3JE1K6GQEaVPAQBYP2QiaOtU0JNElZaP-96Frw2MmfuB53zs8jH1BqBBQPWyr1g4VB8QKZAVcfGAzrDUvldZ4w2aZUSXH-vUj-5TSFgAwv2ZsvtpQ4cKw6-mfn45F6IrWpxSct5MPY5FoKnYxrHsaUuHH4k-0u026Z7ed7RN9vpx3bPXzafX4XC5ffv1-XCxLNwc-laoWQmrNeWMF55KEIFh3SlstqeusU7Z10GjdUA3ydBMK1ihFjXLe1iDu2Pdz7cb2Zhf9YOPRBOvN82JpTn8ACjVCc8DMfjuzedu_e0qTGXxy1Pd2pLBPpm4U5xp4k0k8ky6GlCJ112oEc5JptibLNCeZBqTJMnPm66XdJmf7LtrR-XQNcimEwv_cjzNH2crBUzTJeRodtT6Sm0wb_DtT3gDj1oaw</recordid><startdate>20110806</startdate><enddate>20110806</enddate><creator>Orlovich, Yury</creator><creator>Dolgui, Alexandre</creator><creator>Finke, Gerd</creator><creator>Gordon, Valery</creator><creator>Werner, Frank</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0527-4716</orcidid></search><sort><creationdate>20110806</creationdate><title>The complexity of dissociation set problems in graphs</title><author>Orlovich, Yury ; Dolgui, Alexandre ; Finke, Gerd ; Gordon, Valery ; Werner, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximability</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Dissociation set</topic><topic>Exact sciences and technology</topic><topic>Forbidden induced subgraph</topic><topic>Graphs</topic><topic>Inclusions</topic><topic>Information retrieval. Graph</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operations Research</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlovich, Yury</creatorcontrib><creatorcontrib>Dolgui, Alexandre</creatorcontrib><creatorcontrib>Finke, Gerd</creatorcontrib><creatorcontrib>Gordon, Valery</creatorcontrib><creatorcontrib>Werner, Frank</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlovich, Yury</au><au>Dolgui, Alexandre</au><au>Finke, Gerd</au><au>Gordon, Valery</au><au>Werner, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The complexity of dissociation set problems in graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2011-08-06</date><risdate>2011</risdate><volume>159</volume><issue>13</issue><spage>1352</spage><epage>1366</epage><pages>1352-1366</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><coden>DAMADU</coden><abstract>A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several polynomially solvable cases for the problem under consideration. One of them deals with the subclass of the so-called chair-free graphs. Furthermore, the related problem of finding a maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are derived. Finally, we provide inapproximability results for the dissociation set problems mentioned above.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2011.04.023</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0527-4716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2011-08, Vol.159 (13), p.1352-1366
issn 0166-218X
1872-6771
language eng
recordid cdi_hal_primary_oai_HAL_hal_00617109v1
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximability
Combinatorics
Combinatorics. Ordered structures
Complexity
Computational complexity
Computer Science
Computer science
control theory
systems
Dissociation set
Exact sciences and technology
Forbidden induced subgraph
Graphs
Inclusions
Information retrieval. Graph
Mathematical analysis
Mathematics
Operations Research
Sciences and techniques of general use
Theoretical computing
title The complexity of dissociation set problems in graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20complexity%20of%20dissociation%20set%20problems%20in%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Orlovich,%20Yury&rft.date=2011-08-06&rft.volume=159&rft.issue=13&rft.spage=1352&rft.epage=1366&rft.pages=1352-1366&rft.issn=0166-218X&rft.eissn=1872-6771&rft.coden=DAMADU&rft_id=info:doi/10.1016/j.dam.2011.04.023&rft_dat=%3Cproquest_hal_p%3E896227029%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-6833477229a3224e33e0bf67a74effac6adc09779e804c097360b1438145d803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=896227029&rft_id=info:pmid/&rfr_iscdi=true