Loading…

Another proof of Soittola’s theorem

Soittola’s theorem characterizes R + - or N -rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate a...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science 2008-03, Vol.393 (1), p.196-203
Main Authors: Berstel, Jean, Reutenauer, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653
cites cdi_FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653
container_end_page 203
container_issue 1
container_start_page 196
container_title Theoretical computer science
container_volume 393
creator Berstel, Jean
Reutenauer, Christophe
description Soittola’s theorem characterizes R + - or N -rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate algebraic and analytic arguments.
doi_str_mv 10.1016/j.tcs.2007.11.020
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00619688v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397507008687</els_id><sourcerecordid>oai_HAL_hal_00619688v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJg_fgB3nrpwcOuM8luksVTKWqFggf1HGI2oSnbpiRLwZt_w7_nLzHLSo8OAwMz772ZeYTcIJQIyO82ZW9SSQFEiVgChRMyQSmagtKmOiUTYFAVrBH1OblIaQM5asEnZDbfhX5t43QfQ3DTnK_B933o9M_Xd5rmUYh2e0XOnO6Svf6rl-T98eFtsSxWL0_Pi_mqMIxjXzT2w1LuBIOGS0mlkU64SkpomZZUWNfSihrG0NoGKbQ1zYe2xnAUWAOv2SW5HXXXulP76Lc6fqqgvVrOV2roAXActA-YsThiTQwpReuOBAQ1eKI2KnuiBk8UosqrMmc2cvY6Gd25qHfGpyMxn4OikTLj7keczc8evI0qGW93xrY-WtOrNvh_tvwCTb10iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Another proof of Soittola’s theorem</title><source>ScienceDirect Journals</source><creator>Berstel, Jean ; Reutenauer, Christophe</creator><creatorcontrib>Berstel, Jean ; Reutenauer, Christophe</creatorcontrib><description>Soittola’s theorem characterizes R + - or N -rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate algebraic and analytic arguments.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2007.11.020</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computer Science ; Computer science; control theory; systems ; Data Structures and Algorithms ; Exact sciences and technology ; Formal power series ; Miscellaneous ; Poles of rational fractions ; Rational series ; Theoretical computing</subject><ispartof>Theoretical computer science, 2008-03, Vol.393 (1), p.196-203</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653</citedby><cites>FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20217988$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00619688$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berstel, Jean</creatorcontrib><creatorcontrib>Reutenauer, Christophe</creatorcontrib><title>Another proof of Soittola’s theorem</title><title>Theoretical computer science</title><description>Soittola’s theorem characterizes R + - or N -rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate algebraic and analytic arguments.</description><subject>Applied sciences</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data Structures and Algorithms</subject><subject>Exact sciences and technology</subject><subject>Formal power series</subject><subject>Miscellaneous</subject><subject>Poles of rational fractions</subject><subject>Rational series</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJg_fgB3nrpwcOuM8luksVTKWqFggf1HGI2oSnbpiRLwZt_w7_nLzHLSo8OAwMz772ZeYTcIJQIyO82ZW9SSQFEiVgChRMyQSmagtKmOiUTYFAVrBH1OblIaQM5asEnZDbfhX5t43QfQ3DTnK_B933o9M_Xd5rmUYh2e0XOnO6Svf6rl-T98eFtsSxWL0_Pi_mqMIxjXzT2w1LuBIOGS0mlkU64SkpomZZUWNfSihrG0NoGKbQ1zYe2xnAUWAOv2SW5HXXXulP76Lc6fqqgvVrOV2roAXActA-YsThiTQwpReuOBAQ1eKI2KnuiBk8UosqrMmc2cvY6Gd25qHfGpyMxn4OikTLj7keczc8evI0qGW93xrY-WtOrNvh_tvwCTb10iw</recordid><startdate>20080320</startdate><enddate>20080320</enddate><creator>Berstel, Jean</creator><creator>Reutenauer, Christophe</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20080320</creationdate><title>Another proof of Soittola’s theorem</title><author>Berstel, Jean ; Reutenauer, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data Structures and Algorithms</topic><topic>Exact sciences and technology</topic><topic>Formal power series</topic><topic>Miscellaneous</topic><topic>Poles of rational fractions</topic><topic>Rational series</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berstel, Jean</creatorcontrib><creatorcontrib>Reutenauer, Christophe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berstel, Jean</au><au>Reutenauer, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Another proof of Soittola’s theorem</atitle><jtitle>Theoretical computer science</jtitle><date>2008-03-20</date><risdate>2008</risdate><volume>393</volume><issue>1</issue><spage>196</spage><epage>203</epage><pages>196-203</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>Soittola’s theorem characterizes R + - or N -rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate algebraic and analytic arguments.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2007.11.020</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2008-03, Vol.393 (1), p.196-203
issn 0304-3975
1879-2294
language eng
recordid cdi_hal_primary_oai_HAL_hal_00619688v1
source ScienceDirect Journals
subjects Applied sciences
Computer Science
Computer science
control theory
systems
Data Structures and Algorithms
Exact sciences and technology
Formal power series
Miscellaneous
Poles of rational fractions
Rational series
Theoretical computing
title Another proof of Soittola’s theorem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Another%20proof%20of%20Soittola%E2%80%99s%20theorem&rft.jtitle=Theoretical%20computer%20science&rft.au=Berstel,%20Jean&rft.date=2008-03-20&rft.volume=393&rft.issue=1&rft.spage=196&rft.epage=203&rft.pages=196-203&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2007.11.020&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00619688v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true