Loading…
Another proof of Soittola’s theorem
Soittola’s theorem characterizes R + - or N -rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate a...
Saved in:
Published in: | Theoretical computer science 2008-03, Vol.393 (1), p.196-203 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653 |
container_end_page | 203 |
container_issue | 1 |
container_start_page | 196 |
container_title | Theoretical computer science |
container_volume | 393 |
creator | Berstel, Jean Reutenauer, Christophe |
description | Soittola’s theorem characterizes
R
+
- or
N
-rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate algebraic and analytic arguments. |
doi_str_mv | 10.1016/j.tcs.2007.11.020 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00619688v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397507008687</els_id><sourcerecordid>oai_HAL_hal_00619688v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJg_fgB3nrpwcOuM8luksVTKWqFggf1HGI2oSnbpiRLwZt_w7_nLzHLSo8OAwMz772ZeYTcIJQIyO82ZW9SSQFEiVgChRMyQSmagtKmOiUTYFAVrBH1OblIaQM5asEnZDbfhX5t43QfQ3DTnK_B933o9M_Xd5rmUYh2e0XOnO6Svf6rl-T98eFtsSxWL0_Pi_mqMIxjXzT2w1LuBIOGS0mlkU64SkpomZZUWNfSihrG0NoGKbQ1zYe2xnAUWAOv2SW5HXXXulP76Lc6fqqgvVrOV2roAXActA-YsThiTQwpReuOBAQ1eKI2KnuiBk8UosqrMmc2cvY6Gd25qHfGpyMxn4OikTLj7keczc8evI0qGW93xrY-WtOrNvh_tvwCTb10iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Another proof of Soittola’s theorem</title><source>ScienceDirect Journals</source><creator>Berstel, Jean ; Reutenauer, Christophe</creator><creatorcontrib>Berstel, Jean ; Reutenauer, Christophe</creatorcontrib><description>Soittola’s theorem characterizes
R
+
- or
N
-rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate algebraic and analytic arguments.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2007.11.020</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computer Science ; Computer science; control theory; systems ; Data Structures and Algorithms ; Exact sciences and technology ; Formal power series ; Miscellaneous ; Poles of rational fractions ; Rational series ; Theoretical computing</subject><ispartof>Theoretical computer science, 2008-03, Vol.393 (1), p.196-203</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653</citedby><cites>FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20217988$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00619688$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berstel, Jean</creatorcontrib><creatorcontrib>Reutenauer, Christophe</creatorcontrib><title>Another proof of Soittola’s theorem</title><title>Theoretical computer science</title><description>Soittola’s theorem characterizes
R
+
- or
N
-rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate algebraic and analytic arguments.</description><subject>Applied sciences</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data Structures and Algorithms</subject><subject>Exact sciences and technology</subject><subject>Formal power series</subject><subject>Miscellaneous</subject><subject>Poles of rational fractions</subject><subject>Rational series</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJg_fgB3nrpwcOuM8luksVTKWqFggf1HGI2oSnbpiRLwZt_w7_nLzHLSo8OAwMz772ZeYTcIJQIyO82ZW9SSQFEiVgChRMyQSmagtKmOiUTYFAVrBH1OblIaQM5asEnZDbfhX5t43QfQ3DTnK_B933o9M_Xd5rmUYh2e0XOnO6Svf6rl-T98eFtsSxWL0_Pi_mqMIxjXzT2w1LuBIOGS0mlkU64SkpomZZUWNfSihrG0NoGKbQ1zYe2xnAUWAOv2SW5HXXXulP76Lc6fqqgvVrOV2roAXActA-YsThiTQwpReuOBAQ1eKI2KnuiBk8UosqrMmc2cvY6Gd25qHfGpyMxn4OikTLj7keczc8evI0qGW93xrY-WtOrNvh_tvwCTb10iw</recordid><startdate>20080320</startdate><enddate>20080320</enddate><creator>Berstel, Jean</creator><creator>Reutenauer, Christophe</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20080320</creationdate><title>Another proof of Soittola’s theorem</title><author>Berstel, Jean ; Reutenauer, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data Structures and Algorithms</topic><topic>Exact sciences and technology</topic><topic>Formal power series</topic><topic>Miscellaneous</topic><topic>Poles of rational fractions</topic><topic>Rational series</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berstel, Jean</creatorcontrib><creatorcontrib>Reutenauer, Christophe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berstel, Jean</au><au>Reutenauer, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Another proof of Soittola’s theorem</atitle><jtitle>Theoretical computer science</jtitle><date>2008-03-20</date><risdate>2008</risdate><volume>393</volume><issue>1</issue><spage>196</spage><epage>203</epage><pages>196-203</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>Soittola’s theorem characterizes
R
+
- or
N
-rational formal power series in one variable among the rational formal power series with nonnegative coefficients. We present here a new proof of the theorem based on Soittola’s and Perrin’s proofs together with some new ideas that allows us to separate algebraic and analytic arguments.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2007.11.020</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2008-03, Vol.393 (1), p.196-203 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00619688v1 |
source | ScienceDirect Journals |
subjects | Applied sciences Computer Science Computer science control theory systems Data Structures and Algorithms Exact sciences and technology Formal power series Miscellaneous Poles of rational fractions Rational series Theoretical computing |
title | Another proof of Soittola’s theorem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Another%20proof%20of%20Soittola%E2%80%99s%20theorem&rft.jtitle=Theoretical%20computer%20science&rft.au=Berstel,%20Jean&rft.date=2008-03-20&rft.volume=393&rft.issue=1&rft.spage=196&rft.epage=203&rft.pages=196-203&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2007.11.020&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00619688v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-9ebe26f730968828c8f7f4880d3a827efd242c331ee9120d52020dcc617150653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |