Loading…

Mutational equations of the morphological dilation tubes

The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of di...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical imaging and vision 1995, Vol.5 (3), p.219-230
Main Authors: Doyen, Luc, Najman, Laurent, Mattioli, Juliette
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3
cites cdi_FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3
container_end_page 230
container_issue 3
container_start_page 219
container_title Journal of mathematical imaging and vision
container_volume 5
creator Doyen, Luc
Najman, Laurent
Mattioli, Juliette
description The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of IR n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.
doi_str_mv 10.1007/BF01248373
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00622457v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00622457v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EEqVw4QlyBSmw_rePpaIUKYgLnC0n3pCgFJc4QeLtSVsEpx3tfDOHIeSSwg0F0Ld3K6BMGK75EZlRqXmuleHHZAaWidxa0KfkLKV3ADCM6hkxT-PghzZ--C7Dz3EvUxbrbGgw28R-28QuvrXVZIe229vZMJaYzslJ7buEF793Tl5X9y_LdV48PzwuF0VeMSp4zmRZBysFamkkU-AxSIZWsBIBePDK15ZzDdxQhdoawJIHZhVKJmQQJZ-Tq0Nv4zu37duN779d9K1bLwq3-wEoNrH6i07s9YGt-phSj_VfgILb7eP-9-E_3WRV5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mutational equations of the morphological dilation tubes</title><source>SpringerLink_过刊(NSTL购买)</source><creator>Doyen, Luc ; Najman, Laurent ; Mattioli, Juliette</creator><creatorcontrib>Doyen, Luc ; Najman, Laurent ; Mattioli, Juliette</creatorcontrib><description>The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of IR n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/BF01248373</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Analysis of PDEs ; Differential Geometry ; Dynamical Systems ; Mathematics</subject><ispartof>Journal of mathematical imaging and vision, 1995, Vol.5 (3), p.219-230</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3</citedby><cites>FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3</cites><orcidid>0000-0002-6190-0235 ; 0000-0001-9775-2716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00622457$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Doyen, Luc</creatorcontrib><creatorcontrib>Najman, Laurent</creatorcontrib><creatorcontrib>Mattioli, Juliette</creatorcontrib><title>Mutational equations of the morphological dilation tubes</title><title>Journal of mathematical imaging and vision</title><description>The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of IR n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.</description><subject>Analysis of PDEs</subject><subject>Differential Geometry</subject><subject>Dynamical Systems</subject><subject>Mathematics</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EEqVw4QlyBSmw_rePpaIUKYgLnC0n3pCgFJc4QeLtSVsEpx3tfDOHIeSSwg0F0Ld3K6BMGK75EZlRqXmuleHHZAaWidxa0KfkLKV3ADCM6hkxT-PghzZ--C7Dz3EvUxbrbGgw28R-28QuvrXVZIe229vZMJaYzslJ7buEF793Tl5X9y_LdV48PzwuF0VeMSp4zmRZBysFamkkU-AxSIZWsBIBePDK15ZzDdxQhdoawJIHZhVKJmQQJZ-Tq0Nv4zu37duN779d9K1bLwq3-wEoNrH6i07s9YGt-phSj_VfgILb7eP-9-E_3WRV5Q</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Doyen, Luc</creator><creator>Najman, Laurent</creator><creator>Mattioli, Juliette</creator><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><orcidid>https://orcid.org/0000-0001-9775-2716</orcidid></search><sort><creationdate>1995</creationdate><title>Mutational equations of the morphological dilation tubes</title><author>Doyen, Luc ; Najman, Laurent ; Mattioli, Juliette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Analysis of PDEs</topic><topic>Differential Geometry</topic><topic>Dynamical Systems</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doyen, Luc</creatorcontrib><creatorcontrib>Najman, Laurent</creatorcontrib><creatorcontrib>Mattioli, Juliette</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doyen, Luc</au><au>Najman, Laurent</au><au>Mattioli, Juliette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutational equations of the morphological dilation tubes</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><date>1995</date><risdate>1995</risdate><volume>5</volume><issue>3</issue><spage>219</spage><epage>230</epage><pages>219-230</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of IR n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.</abstract><pub>Springer Verlag</pub><doi>10.1007/BF01248373</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><orcidid>https://orcid.org/0000-0001-9775-2716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 1995, Vol.5 (3), p.219-230
issn 0924-9907
1573-7683
language eng
recordid cdi_hal_primary_oai_HAL_hal_00622457v1
source SpringerLink_过刊(NSTL购买)
subjects Analysis of PDEs
Differential Geometry
Dynamical Systems
Mathematics
title Mutational equations of the morphological dilation tubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutational%20equations%20of%20the%20morphological%20dilation%20tubes&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Doyen,%20Luc&rft.date=1995&rft.volume=5&rft.issue=3&rft.spage=219&rft.epage=230&rft.pages=219-230&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/BF01248373&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00622457v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true