Loading…
Mutational equations of the morphological dilation tubes
The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of di...
Saved in:
Published in: | Journal of mathematical imaging and vision 1995, Vol.5 (3), p.219-230 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3 |
container_end_page | 230 |
container_issue | 3 |
container_start_page | 219 |
container_title | Journal of mathematical imaging and vision |
container_volume | 5 |
creator | Doyen, Luc Najman, Laurent Mattioli, Juliette |
description | The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of IR n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set. |
doi_str_mv | 10.1007/BF01248373 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00622457v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00622457v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EEqVw4QlyBSmw_rePpaIUKYgLnC0n3pCgFJc4QeLtSVsEpx3tfDOHIeSSwg0F0Ld3K6BMGK75EZlRqXmuleHHZAaWidxa0KfkLKV3ADCM6hkxT-PghzZ--C7Dz3EvUxbrbGgw28R-28QuvrXVZIe229vZMJaYzslJ7buEF793Tl5X9y_LdV48PzwuF0VeMSp4zmRZBysFamkkU-AxSIZWsBIBePDK15ZzDdxQhdoawJIHZhVKJmQQJZ-Tq0Nv4zu37duN779d9K1bLwq3-wEoNrH6i07s9YGt-phSj_VfgILb7eP-9-E_3WRV5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mutational equations of the morphological dilation tubes</title><source>SpringerLink_过刊(NSTL购买)</source><creator>Doyen, Luc ; Najman, Laurent ; Mattioli, Juliette</creator><creatorcontrib>Doyen, Luc ; Najman, Laurent ; Mattioli, Juliette</creatorcontrib><description>The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of IR n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/BF01248373</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Analysis of PDEs ; Differential Geometry ; Dynamical Systems ; Mathematics</subject><ispartof>Journal of mathematical imaging and vision, 1995, Vol.5 (3), p.219-230</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3</citedby><cites>FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3</cites><orcidid>0000-0002-6190-0235 ; 0000-0001-9775-2716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00622457$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Doyen, Luc</creatorcontrib><creatorcontrib>Najman, Laurent</creatorcontrib><creatorcontrib>Mattioli, Juliette</creatorcontrib><title>Mutational equations of the morphological dilation tubes</title><title>Journal of mathematical imaging and vision</title><description>The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of IR n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.</description><subject>Analysis of PDEs</subject><subject>Differential Geometry</subject><subject>Dynamical Systems</subject><subject>Mathematics</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EEqVw4QlyBSmw_rePpaIUKYgLnC0n3pCgFJc4QeLtSVsEpx3tfDOHIeSSwg0F0Ld3K6BMGK75EZlRqXmuleHHZAaWidxa0KfkLKV3ADCM6hkxT-PghzZ--C7Dz3EvUxbrbGgw28R-28QuvrXVZIe229vZMJaYzslJ7buEF793Tl5X9y_LdV48PzwuF0VeMSp4zmRZBysFamkkU-AxSIZWsBIBePDK15ZzDdxQhdoawJIHZhVKJmQQJZ-Tq0Nv4zu37duN779d9K1bLwq3-wEoNrH6i07s9YGt-phSj_VfgILb7eP-9-E_3WRV5Q</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Doyen, Luc</creator><creator>Najman, Laurent</creator><creator>Mattioli, Juliette</creator><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><orcidid>https://orcid.org/0000-0001-9775-2716</orcidid></search><sort><creationdate>1995</creationdate><title>Mutational equations of the morphological dilation tubes</title><author>Doyen, Luc ; Najman, Laurent ; Mattioli, Juliette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Analysis of PDEs</topic><topic>Differential Geometry</topic><topic>Dynamical Systems</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doyen, Luc</creatorcontrib><creatorcontrib>Najman, Laurent</creatorcontrib><creatorcontrib>Mattioli, Juliette</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doyen, Luc</au><au>Najman, Laurent</au><au>Mattioli, Juliette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutational equations of the morphological dilation tubes</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><date>1995</date><risdate>1995</risdate><volume>5</volume><issue>3</issue><spage>219</spage><epage>230</epage><pages>219-230</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>The present paper provides some differential results dealing with the morpho-logical dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equa-tions which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of IR n . Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.</abstract><pub>Springer Verlag</pub><doi>10.1007/BF01248373</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><orcidid>https://orcid.org/0000-0001-9775-2716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-9907 |
ispartof | Journal of mathematical imaging and vision, 1995, Vol.5 (3), p.219-230 |
issn | 0924-9907 1573-7683 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00622457v1 |
source | SpringerLink_过刊(NSTL购买) |
subjects | Analysis of PDEs Differential Geometry Dynamical Systems Mathematics |
title | Mutational equations of the morphological dilation tubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutational%20equations%20of%20the%20morphological%20dilation%20tubes&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Doyen,%20Luc&rft.date=1995&rft.volume=5&rft.issue=3&rft.spage=219&rft.epage=230&rft.pages=219-230&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/BF01248373&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00622457v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2143-25bfd954e7585260aed52e942be003da6af933703816e7980eb3d296e5245d4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |