Loading…
Global and bifurcation analysis of a structure with cyclic symmetry
This article combines the application of a global analysis approach and the more classical continuation, bifurcation and stability analysis approach of a cyclic symmetric system. A solid disc with four blades, linearly coupled, but with an intrinsic non-linear cubic stiffness is at stake. Dynamic eq...
Saved in:
Published in: | International journal of non-linear mechanics 2011-06, Vol.46 (5), p.727-737 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c471t-f506280d56635ee9b1ee5b19f4c13ac4c87af1422b8fc7fe0450caa80a455fdd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c471t-f506280d56635ee9b1ee5b19f4c13ac4c87af1422b8fc7fe0450caa80a455fdd3 |
container_end_page | 737 |
container_issue | 5 |
container_start_page | 727 |
container_title | International journal of non-linear mechanics |
container_volume | 46 |
creator | Sarrouy, E. Grolet, A. Thouverez, F. |
description | This article combines the application of a global analysis approach and the more classical continuation, bifurcation and stability analysis approach of a cyclic symmetric system. A solid disc with four blades, linearly coupled, but with an intrinsic non-linear cubic stiffness is at stake. Dynamic equations are turned into a set of non-linear algebraic equations using the harmonic balance method. Then periodic solutions are sought using a recursive application of a global analysis method for various pulsation values. This exhibits disconnected branches in both the free undamped case (non-linear normal modes, NNMs) and in a forced case which shows the link between NNMs and forced response. For each case, a full bifurcation diagram is provided and commented using tools devoted to continuation, bifurcation and stability analysis. |
doi_str_mv | 10.1016/j.ijnonlinmec.2011.02.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00623630v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746211000084</els_id><sourcerecordid>1744701595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-f506280d56635ee9b1ee5b19f4c13ac4c87af1422b8fc7fe0450caa80a455fdd3</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS1EJZaW_xBOwCFh7NiJc6xW0CKtxAXOljMZq145cbGTovx7Ei1CPVWcRjP63szTPMbec6g48ObzufLnKU7BTyNhJYDzCkQFoF6xA9etLlVT69fsACCgbGUj3rC3OZ9h00poD-x4F2JvQ2Gnoei9WxLa2cdp621Ys89FdIUt8pwWnJdExW8_PxS4YvBY5HUcaU7rDbtyNmR697des59fv_w43pen73ffjrenEmXL59IpaISGQTVNrYi6nhOpnndOIq8tStStdVwK0WuHrSOQCtBaDVYq5YahvmafLnsfbDCPyY82rSZab-5vT2afwXagbmp44hv74cI-pvhroTyb0WekEOxEcclGa2hUJ8VOfnyR5K2ULXDVqQ3tLiimmHMi988FB7PHYc7mWRxmj8OA2Hzt2uNFS9uHnjwlk9HThDT4RDibIfr_2PIH12KZCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744701595</pqid></control><display><type>article</type><title>Global and bifurcation analysis of a structure with cyclic symmetry</title><source>ScienceDirect Freedom Collection</source><source>ScienceDirect: Physics General Backfile</source><creator>Sarrouy, E. ; Grolet, A. ; Thouverez, F.</creator><creatorcontrib>Sarrouy, E. ; Grolet, A. ; Thouverez, F.</creatorcontrib><description>This article combines the application of a global analysis approach and the more classical continuation, bifurcation and stability analysis approach of a cyclic symmetric system. A solid disc with four blades, linearly coupled, but with an intrinsic non-linear cubic stiffness is at stake. Dynamic equations are turned into a set of non-linear algebraic equations using the harmonic balance method. Then periodic solutions are sought using a recursive application of a global analysis method for various pulsation values. This exhibits disconnected branches in both the free undamped case (non-linear normal modes, NNMs) and in a forced case which shows the link between NNMs and forced response. For each case, a full bifurcation diagram is provided and commented using tools devoted to continuation, bifurcation and stability analysis.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2011.02.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bifurcations ; Cyclic symmetry ; Discs ; Dynamical systems ; Engineering Sciences ; Global analysis ; Homotopy ; Mathematical analysis ; Mechanics ; Non-linear ; Nonlinear dynamics ; Nonlinearity ; Physics ; Pulsation ; Rotordynamics ; Stability analysis ; Structural mechanics</subject><ispartof>International journal of non-linear mechanics, 2011-06, Vol.46 (5), p.727-737</ispartof><rights>2011 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-f506280d56635ee9b1ee5b19f4c13ac4c87af1422b8fc7fe0450caa80a455fdd3</citedby><cites>FETCH-LOGICAL-c471t-f506280d56635ee9b1ee5b19f4c13ac4c87af1422b8fc7fe0450caa80a455fdd3</cites><orcidid>0000-0002-0236-708X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746211000084$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3632,27924,27925,46012</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00623630$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarrouy, E.</creatorcontrib><creatorcontrib>Grolet, A.</creatorcontrib><creatorcontrib>Thouverez, F.</creatorcontrib><title>Global and bifurcation analysis of a structure with cyclic symmetry</title><title>International journal of non-linear mechanics</title><description>This article combines the application of a global analysis approach and the more classical continuation, bifurcation and stability analysis approach of a cyclic symmetric system. A solid disc with four blades, linearly coupled, but with an intrinsic non-linear cubic stiffness is at stake. Dynamic equations are turned into a set of non-linear algebraic equations using the harmonic balance method. Then periodic solutions are sought using a recursive application of a global analysis method for various pulsation values. This exhibits disconnected branches in both the free undamped case (non-linear normal modes, NNMs) and in a forced case which shows the link between NNMs and forced response. For each case, a full bifurcation diagram is provided and commented using tools devoted to continuation, bifurcation and stability analysis.</description><subject>Bifurcations</subject><subject>Cyclic symmetry</subject><subject>Discs</subject><subject>Dynamical systems</subject><subject>Engineering Sciences</subject><subject>Global analysis</subject><subject>Homotopy</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Non-linear</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Pulsation</subject><subject>Rotordynamics</subject><subject>Stability analysis</subject><subject>Structural mechanics</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS1EJZaW_xBOwCFh7NiJc6xW0CKtxAXOljMZq145cbGTovx7Ei1CPVWcRjP63szTPMbec6g48ObzufLnKU7BTyNhJYDzCkQFoF6xA9etLlVT69fsACCgbGUj3rC3OZ9h00poD-x4F2JvQ2Gnoei9WxLa2cdp621Ys89FdIUt8pwWnJdExW8_PxS4YvBY5HUcaU7rDbtyNmR697des59fv_w43pen73ffjrenEmXL59IpaISGQTVNrYi6nhOpnndOIq8tStStdVwK0WuHrSOQCtBaDVYq5YahvmafLnsfbDCPyY82rSZab-5vT2afwXagbmp44hv74cI-pvhroTyb0WekEOxEcclGa2hUJ8VOfnyR5K2ULXDVqQ3tLiimmHMi988FB7PHYc7mWRxmj8OA2Hzt2uNFS9uHnjwlk9HThDT4RDibIfr_2PIH12KZCg</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Sarrouy, E.</creator><creator>Grolet, A.</creator><creator>Thouverez, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0236-708X</orcidid></search><sort><creationdate>20110601</creationdate><title>Global and bifurcation analysis of a structure with cyclic symmetry</title><author>Sarrouy, E. ; Grolet, A. ; Thouverez, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-f506280d56635ee9b1ee5b19f4c13ac4c87af1422b8fc7fe0450caa80a455fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bifurcations</topic><topic>Cyclic symmetry</topic><topic>Discs</topic><topic>Dynamical systems</topic><topic>Engineering Sciences</topic><topic>Global analysis</topic><topic>Homotopy</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Non-linear</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Pulsation</topic><topic>Rotordynamics</topic><topic>Stability analysis</topic><topic>Structural mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarrouy, E.</creatorcontrib><creatorcontrib>Grolet, A.</creatorcontrib><creatorcontrib>Thouverez, F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarrouy, E.</au><au>Grolet, A.</au><au>Thouverez, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global and bifurcation analysis of a structure with cyclic symmetry</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>46</volume><issue>5</issue><spage>727</spage><epage>737</epage><pages>727-737</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>This article combines the application of a global analysis approach and the more classical continuation, bifurcation and stability analysis approach of a cyclic symmetric system. A solid disc with four blades, linearly coupled, but with an intrinsic non-linear cubic stiffness is at stake. Dynamic equations are turned into a set of non-linear algebraic equations using the harmonic balance method. Then periodic solutions are sought using a recursive application of a global analysis method for various pulsation values. This exhibits disconnected branches in both the free undamped case (non-linear normal modes, NNMs) and in a forced case which shows the link between NNMs and forced response. For each case, a full bifurcation diagram is provided and commented using tools devoted to continuation, bifurcation and stability analysis.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2011.02.005</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0236-708X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2011-06, Vol.46 (5), p.727-737 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00623630v1 |
source | ScienceDirect Freedom Collection; ScienceDirect: Physics General Backfile |
subjects | Bifurcations Cyclic symmetry Discs Dynamical systems Engineering Sciences Global analysis Homotopy Mathematical analysis Mechanics Non-linear Nonlinear dynamics Nonlinearity Physics Pulsation Rotordynamics Stability analysis Structural mechanics |
title | Global and bifurcation analysis of a structure with cyclic symmetry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20and%20bifurcation%20analysis%20of%20a%20structure%20with%20cyclic%20symmetry&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Sarrouy,%20E.&rft.date=2011-06-01&rft.volume=46&rft.issue=5&rft.spage=727&rft.epage=737&rft.pages=727-737&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2011.02.005&rft_dat=%3Cproquest_hal_p%3E1744701595%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-f506280d56635ee9b1ee5b19f4c13ac4c87af1422b8fc7fe0450caa80a455fdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1744701595&rft_id=info:pmid/&rfr_iscdi=true |