Loading…
Hypoxia and succinate antagonize 2-deoxyglucose effects on glioblastoma
Glioblastoma multiforme (GBM) are highly proliferative brain tumors characterized by a hypoxic microenvironment which controls GBM stem cell maintenance. Tumor hypoxia promotes also elevated glycolytic rate; thus, limiting glucose metabolism is a potential approach to inhibit tumor growth. Here we i...
Saved in:
Published in: | Biochemical pharmacology 2010-11, Vol.80 (10), p.1517-1527 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glioblastoma multiforme (GBM) are highly proliferative brain tumors characterized by a hypoxic microenvironment which controls GBM stem cell maintenance. Tumor hypoxia promotes also elevated glycolytic rate; thus, limiting glucose metabolism is a potential approach to inhibit tumor growth. Here we investigate the effects mediated by 2-deoxyglucose (2-DG), a glucose analogue, on primary GBM-derived cells maintained under hypoxia. Our results indicate that hypoxia protects GBM cells from the apoptotic effect elicited by 2-DG, which raises succinate dehydrogenase activity thus promoting succinate level decrease. As a consequence hypoxia inducible factor-1α (HIF-1α) degradation occurs and this induces GBM cells to acquire a neuronal committed phenotype. By adding succinate these effects are reverted, as succinate stabilizes HIF-1α and increases GBM stem cell fraction particularly under hypoxia, thus preserving the tumor stem cell niche.
2-DG inhibits anaerobic glycolysis altering GBM cell phenotype by forcing tumor cells into mitochondrial metabolism and by inducing differentiation. |
---|---|
ISSN: | 0006-2952 1873-2968 |
DOI: | 10.1016/j.bcp.2010.08.003 |