Loading…
There is no variational characterization of the cycles in the method of periodic projections
The method of periodic projections consists in iterating projections onto m closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of m ⩾ 3 sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can b...
Saved in:
Published in: | Journal of functional analysis 2012, Vol.262 (1), p.400-408 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-b8ab807e9720d2dfa4a0353ccb70ef53c57daa9d30b9a141c7c2830c9f8193b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c374t-b8ab807e9720d2dfa4a0353ccb70ef53c57daa9d30b9a141c7c2830c9f8193b73 |
container_end_page | 408 |
container_issue | 1 |
container_start_page | 400 |
container_title | Journal of functional analysis |
container_volume | 262 |
creator | Baillon, J.-B. Combettes, P.L. Cominetti, R. |
description | The method of periodic projections consists in iterating projections onto
m closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of
m
⩾
3
sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers of a certain functional. In this paper we answer this question in the negative. Projection algorithms for minimizing smooth convex functions over a product of convex sets are also discussed. |
doi_str_mv | 10.1016/j.jfa.2011.09.002 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00643370v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123611003296</els_id><sourcerecordid>oai_HAL_hal_00643370v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-b8ab807e9720d2dfa4a0353ccb70ef53c57daa9d30b9a141c7c2830c9f8193b73</originalsourceid><addsrcrecordid>eNp9kE9rwzAMxc3YYF23D7Cbrzskk-00TtiplP2Dwi7dbWAU2yEOaV3sUOg-_Zx27LiTpKf3E-gRcs8gZ8DKxz7vW8w5MJZDnQPwCzJjUJcZyEpckllSeMa4KK_JTYw9JGNZLGbka9PZYKmLdOfpAYPD0fkdDlR3GFCPNrjvk0R9S8fOUn3Ug43U7U7T1o6dN9Nun5zeOE33wfdWT0i8JVctDtHe_dY5-Xx53qzesvXH6_tquc60kMWYNRU2FUhbSw6GmxYLBLEQWjcSbJuahTSItRHQ1MgKpqXmlQBdtxWrRSPFnDyc73Y4qH1wWwxH5dGpt-VaTRpAWQgh4cCSl529OvgYg23_AAZqilL1KkWppigV1AnliXk6MzY9cXA2qKid3WlrXEivKuPdP_QP5uh8dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>There is no variational characterization of the cycles in the method of periodic projections</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Baillon, J.-B. ; Combettes, P.L. ; Cominetti, R.</creator><creatorcontrib>Baillon, J.-B. ; Combettes, P.L. ; Cominetti, R.</creatorcontrib><description>The method of periodic projections consists in iterating projections onto
m closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of
m
⩾
3
sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers of a certain functional. In this paper we answer this question in the negative. Projection algorithms for minimizing smooth convex functions over a product of convex sets are also discussed.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1016/j.jfa.2011.09.002</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Alternating projections ; Best approximation ; Limit cycle ; Von Neumann algorithm</subject><ispartof>Journal of functional analysis, 2012, Vol.262 (1), p.400-408</ispartof><rights>2011 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-b8ab807e9720d2dfa4a0353ccb70ef53c57daa9d30b9a141c7c2830c9f8193b73</citedby><cites>FETCH-LOGICAL-c374t-b8ab807e9720d2dfa4a0353ccb70ef53c57daa9d30b9a141c7c2830c9f8193b73</cites><orcidid>0000-0001-9442-344X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00643370$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baillon, J.-B.</creatorcontrib><creatorcontrib>Combettes, P.L.</creatorcontrib><creatorcontrib>Cominetti, R.</creatorcontrib><title>There is no variational characterization of the cycles in the method of periodic projections</title><title>Journal of functional analysis</title><description>The method of periodic projections consists in iterating projections onto
m closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of
m
⩾
3
sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers of a certain functional. In this paper we answer this question in the negative. Projection algorithms for minimizing smooth convex functions over a product of convex sets are also discussed.</description><subject>Alternating projections</subject><subject>Best approximation</subject><subject>Limit cycle</subject><subject>Von Neumann algorithm</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rwzAMxc3YYF23D7Cbrzskk-00TtiplP2Dwi7dbWAU2yEOaV3sUOg-_Zx27LiTpKf3E-gRcs8gZ8DKxz7vW8w5MJZDnQPwCzJjUJcZyEpckllSeMa4KK_JTYw9JGNZLGbka9PZYKmLdOfpAYPD0fkdDlR3GFCPNrjvk0R9S8fOUn3Ug43U7U7T1o6dN9Nun5zeOE33wfdWT0i8JVctDtHe_dY5-Xx53qzesvXH6_tquc60kMWYNRU2FUhbSw6GmxYLBLEQWjcSbJuahTSItRHQ1MgKpqXmlQBdtxWrRSPFnDyc73Y4qH1wWwxH5dGpt-VaTRpAWQgh4cCSl529OvgYg23_AAZqilL1KkWppigV1AnliXk6MzY9cXA2qKid3WlrXEivKuPdP_QP5uh8dw</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Baillon, J.-B.</creator><creator>Combettes, P.L.</creator><creator>Cominetti, R.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9442-344X</orcidid></search><sort><creationdate>2012</creationdate><title>There is no variational characterization of the cycles in the method of periodic projections</title><author>Baillon, J.-B. ; Combettes, P.L. ; Cominetti, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-b8ab807e9720d2dfa4a0353ccb70ef53c57daa9d30b9a141c7c2830c9f8193b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alternating projections</topic><topic>Best approximation</topic><topic>Limit cycle</topic><topic>Von Neumann algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baillon, J.-B.</creatorcontrib><creatorcontrib>Combettes, P.L.</creatorcontrib><creatorcontrib>Cominetti, R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baillon, J.-B.</au><au>Combettes, P.L.</au><au>Cominetti, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>There is no variational characterization of the cycles in the method of periodic projections</atitle><jtitle>Journal of functional analysis</jtitle><date>2012</date><risdate>2012</risdate><volume>262</volume><issue>1</issue><spage>400</spage><epage>408</epage><pages>400-408</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>The method of periodic projections consists in iterating projections onto
m closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of
m
⩾
3
sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers of a certain functional. In this paper we answer this question in the negative. Projection algorithms for minimizing smooth convex functions over a product of convex sets are also discussed.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfa.2011.09.002</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9442-344X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1236 |
ispartof | Journal of functional analysis, 2012, Vol.262 (1), p.400-408 |
issn | 0022-1236 1096-0783 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00643370v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Alternating projections Best approximation Limit cycle Von Neumann algorithm |
title | There is no variational characterization of the cycles in the method of periodic projections |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=There%20is%20no%20variational%20characterization%20of%20the%20cycles%20in%20the%20method%20of%20periodic%20projections&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Baillon,%20J.-B.&rft.date=2012&rft.volume=262&rft.issue=1&rft.spage=400&rft.epage=408&rft.pages=400-408&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1016/j.jfa.2011.09.002&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00643370v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-b8ab807e9720d2dfa4a0353ccb70ef53c57daa9d30b9a141c7c2830c9f8193b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |