Loading…
Evidence of thermal effects in a high-power Er3+-Yb3+ fiber laser
We analyze the influence of heat generation caused by nonradiative transitions in a high-power 1.55 microm double-clad erbium-ytterbium fiber laser on the Stark level population. At strong pumping rates, 1 microm lasing can start as a result of parasitic reflections. We present a model that allows u...
Saved in:
Published in: | Optics letters 2005-11, Vol.30 (22), p.3030-3032 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyze the influence of heat generation caused by nonradiative transitions in a high-power 1.55 microm double-clad erbium-ytterbium fiber laser on the Stark level population. At strong pumping rates, 1 microm lasing can start as a result of parasitic reflections. We present a model that allows us to simulate the effect of self-generated heat on the Stark level population by using the MacCumber relation. Heat generation plays a significant role and improves the 1.5 microm laser's efficiency by increasing the 1 microm lasing threshold. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.30.003030 |