Loading…
3D viscous incompressible fluid around one thin obstacle
In this article, we consider Leray solutions of the Navier-Stokes equations in the exterior of one obstacle in 3D and we study the asymptotic behavior of these solutions when the obstacle shrinks to a curve or to a surface. In particular, we will prove that a solid curve has no effect on the motion...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2015-05, Vol.143 (5), p.2175-2191 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a356t-87e975de8299a063686dbcf0200ad897f2b0ac8dea0cbae780a44dac8b6fe753 |
---|---|
cites | cdi_FETCH-LOGICAL-a356t-87e975de8299a063686dbcf0200ad897f2b0ac8dea0cbae780a44dac8b6fe753 |
container_end_page | 2191 |
container_issue | 5 |
container_start_page | 2175 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 143 |
creator | LACAVE, C. |
description | In this article, we consider Leray solutions of the Navier-Stokes equations in the exterior of one obstacle in 3D and we study the asymptotic behavior of these solutions when the obstacle shrinks to a curve or to a surface. In particular, we will prove that a solid curve has no effect on the motion of a viscous fluid, so it is a removable singularity for these equations. |
doi_str_mv | 10.1090/S0002-9939-2014-12409-9 |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00653694v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24507307</jstor_id><sourcerecordid>24507307</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-87e975de8299a063686dbcf0200ad897f2b0ac8dea0cbae780a44dac8b6fe753</originalsourceid><addsrcrecordid>eNqNkEtrwzAQhEVpoWnan1Cqaw9qV5KtxzGkTwj00NyFbMlEwbGC5AT672vHJefCwrKzM3P4EHqg8ERBw_M3ADCiNdeEAS0IZQVooi_QjIJSRCgmLtHsbLpGNzlvh5PqQs6Q4i_4GHIdDxmHro67ffI5h6r1uGkPwWGb4qFzOHYe95vQ4Vjl3tatv0VXjW2zv_vbc7R-e10vP8jq6_1zuVgRy0vREyW9lqXzimltQXChhKvqBhiAdUrLhlVga-W8hbqyXiqwReEGpRKNlyWfo8epdmNbs09hZ9OPiTaYj8XKjBqAKLnQxZEOXjl56xRzTr45ByiYkZU5sTIjBjOyMidWRg_J-ym5zX1M5xgrSpB8mDli09_u8r9LfwFzbHSF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D viscous incompressible fluid around one thin obstacle</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications (Freely Accessible)</source><creator>LACAVE, C.</creator><creatorcontrib>LACAVE, C.</creatorcontrib><description>In this article, we consider Leray solutions of the Navier-Stokes equations in the exterior of one obstacle in 3D and we study the asymptotic behavior of these solutions when the obstacle shrinks to a curve or to a surface. In particular, we will prove that a solid curve has no effect on the motion of a viscous fluid, so it is a removable singularity for these equations.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-2014-12409-9</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Analysis of PDEs ; Mathematics</subject><ispartof>Proceedings of the American Mathematical Society, 2015-05, Vol.143 (5), p.2175-2191</ispartof><rights>Copyright 2014, American Mathematical Society</rights><rights>2015 American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a356t-87e975de8299a063686dbcf0200ad897f2b0ac8dea0cbae780a44dac8b6fe753</citedby><cites>FETCH-LOGICAL-a356t-87e975de8299a063686dbcf0200ad897f2b0ac8dea0cbae780a44dac8b6fe753</cites><orcidid>0000-0002-2488-4117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2015-143-05/S0002-9939-2014-12409-9/S0002-9939-2014-12409-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2015-143-05/S0002-9939-2014-12409-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,230,314,780,784,885,23324,27924,27925,58238,58471,77838,77848</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00653694$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>LACAVE, C.</creatorcontrib><title>3D viscous incompressible fluid around one thin obstacle</title><title>Proceedings of the American Mathematical Society</title><description>In this article, we consider Leray solutions of the Navier-Stokes equations in the exterior of one obstacle in 3D and we study the asymptotic behavior of these solutions when the obstacle shrinks to a curve or to a surface. In particular, we will prove that a solid curve has no effect on the motion of a viscous fluid, so it is a removable singularity for these equations.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkEtrwzAQhEVpoWnan1Cqaw9qV5KtxzGkTwj00NyFbMlEwbGC5AT672vHJefCwrKzM3P4EHqg8ERBw_M3ADCiNdeEAS0IZQVooi_QjIJSRCgmLtHsbLpGNzlvh5PqQs6Q4i_4GHIdDxmHro67ffI5h6r1uGkPwWGb4qFzOHYe95vQ4Vjl3tatv0VXjW2zv_vbc7R-e10vP8jq6_1zuVgRy0vREyW9lqXzimltQXChhKvqBhiAdUrLhlVga-W8hbqyXiqwReEGpRKNlyWfo8epdmNbs09hZ9OPiTaYj8XKjBqAKLnQxZEOXjl56xRzTr45ByiYkZU5sTIjBjOyMidWRg_J-ym5zX1M5xgrSpB8mDli09_u8r9LfwFzbHSF</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>LACAVE, C.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2488-4117</orcidid></search><sort><creationdate>20150501</creationdate><title>3D viscous incompressible fluid around one thin obstacle</title><author>LACAVE, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-87e975de8299a063686dbcf0200ad897f2b0ac8dea0cbae780a44dac8b6fe753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LACAVE, C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LACAVE, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D viscous incompressible fluid around one thin obstacle</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>143</volume><issue>5</issue><spage>2175</spage><epage>2191</epage><pages>2175-2191</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>In this article, we consider Leray solutions of the Navier-Stokes equations in the exterior of one obstacle in 3D and we study the asymptotic behavior of these solutions when the obstacle shrinks to a curve or to a surface. In particular, we will prove that a solid curve has no effect on the motion of a viscous fluid, so it is a removable singularity for these equations.</abstract><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-2014-12409-9</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2488-4117</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2015-05, Vol.143 (5), p.2175-2191 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00653694v1 |
source | JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications (Freely Accessible) |
subjects | Analysis of PDEs Mathematics |
title | 3D viscous incompressible fluid around one thin obstacle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20viscous%20incompressible%20fluid%20around%20one%20thin%20obstacle&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=LACAVE,%20C.&rft.date=2015-05-01&rft.volume=143&rft.issue=5&rft.spage=2175&rft.epage=2191&rft.pages=2175-2191&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/S0002-9939-2014-12409-9&rft_dat=%3Cjstor_hal_p%3E24507307%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a356t-87e975de8299a063686dbcf0200ad897f2b0ac8dea0cbae780a44dac8b6fe753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24507307&rfr_iscdi=true |