Loading…

Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow

When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a beh...

Full description

Saved in:
Bibliographic Details
Published in:Rheologica acta 2003-09, Vol.42 (5), p.421-431
Main Authors: ASTRUC, Marianne, VERVOORT, Sylvie, NOUATIN, Hervé O, COUPEZ, Thierry, DE PUYDT, Yves, NAVARD, Patrick, PEUVREL-DISDIER, Edith
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-7b29970689a8f11f5ea53402b9c76f78be9db33953ab700bc1c2311aacded03d3
cites
container_end_page 431
container_issue 5
container_start_page 421
container_title Rheologica acta
container_volume 42
creator ASTRUC, Marianne
VERVOORT, Sylvie
NOUATIN, Hervé O
COUPEZ, Thierry
DE PUYDT, Yves
NAVARD, Patrick
PEUVREL-DISDIER, Edith
description When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We>0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.
doi_str_mv 10.1007/s00397-003-0296-9
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00672001v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262020750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-7b29970689a8f11f5ea53402b9c76f78be9db33953ab700bc1c2311aacded03d3</originalsourceid><addsrcrecordid>eNpFUcFu1DAQtRCVWFo-gJslxIFDythex-tjVbW00kpc4Gw5jq11lY2DJyn0zoczYav2YmvmvXl684axjwIuBYD5igDKmobeBqRtG_uGbcRW6UZouXvLNgToZquFeMfeIz4ACNMauWF_b_5MseZjHGc_cD_2fFyO1AhU4bz0T7wkPh8ir2X2cy7jf87aiLXgWhOe8jDEihwXnOLYx57nkT9mDCUOHucceBqW3CNfCKwc83EaIsdD9JWQ8vuCnSU_YPzw_J-zn7c3P67vmv33b_fXV_smKKXnxnTSWgPtzvpdEiLp6LXaguxsMG0yuy7avlPKauU7A9AFEaQSwvtAlkD16px9Oeke_OAm2trXJ1d8dndXe7f2ACgUyuZREPfTiTvV8muJOLuHstSR7DkpWwkSjAZiiRMrUBpYY3qRFeDWw7jTYUhZufUwztLM52dljxRzqn4MGV8HtZDkQap_2_yO-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262020750</pqid></control><display><type>article</type><title>Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow</title><source>Springer Nature</source><creator>ASTRUC, Marianne ; VERVOORT, Sylvie ; NOUATIN, Hervé O ; COUPEZ, Thierry ; DE PUYDT, Yves ; NAVARD, Patrick ; PEUVREL-DISDIER, Edith</creator><creatorcontrib>ASTRUC, Marianne ; VERVOORT, Sylvie ; NOUATIN, Hervé O ; COUPEZ, Thierry ; DE PUYDT, Yves ; NAVARD, Patrick ; PEUVREL-DISDIER, Edith</creatorcontrib><description>When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We&gt;0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-003-0296-9</identifier><identifier>CODEN: RHEAAK</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Agglomerates ; Agglomeration ; Applied sciences ; Axis movements ; Carbon black ; Compounding ingredients ; Computational fluid dynamics ; Computer simulation ; Elasticity ; Engineering Sciences ; Erosion ; Exact sciences and technology ; Fillers ; Fillers and reinforcing agents ; Finite element method ; Fluid flow ; Fluids ; Materials ; Mathematical models ; Polymer industry, paints, wood ; Rotation ; Shear flow ; Size reduction ; Technology of polymers ; Viscoelastic fluids ; Viscoelasticity ; Vorticity</subject><ispartof>Rheologica acta, 2003-09, Vol.42 (5), p.421-431</ispartof><rights>2004 INIST-CNRS</rights><rights>Rheologica Acta is a copyright of Springer, (2003). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-7b29970689a8f11f5ea53402b9c76f78be9db33953ab700bc1c2311aacded03d3</citedby><orcidid>0000-0001-9464-5990 ; 0000-0001-8264-6507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15122002$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00672001$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>ASTRUC, Marianne</creatorcontrib><creatorcontrib>VERVOORT, Sylvie</creatorcontrib><creatorcontrib>NOUATIN, Hervé O</creatorcontrib><creatorcontrib>COUPEZ, Thierry</creatorcontrib><creatorcontrib>DE PUYDT, Yves</creatorcontrib><creatorcontrib>NAVARD, Patrick</creatorcontrib><creatorcontrib>PEUVREL-DISDIER, Edith</creatorcontrib><title>Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow</title><title>Rheologica acta</title><description>When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We&gt;0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.</description><subject>Agglomerates</subject><subject>Agglomeration</subject><subject>Applied sciences</subject><subject>Axis movements</subject><subject>Carbon black</subject><subject>Compounding ingredients</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Elasticity</subject><subject>Engineering Sciences</subject><subject>Erosion</subject><subject>Exact sciences and technology</subject><subject>Fillers</subject><subject>Fillers and reinforcing agents</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Polymer industry, paints, wood</subject><subject>Rotation</subject><subject>Shear flow</subject><subject>Size reduction</subject><subject>Technology of polymers</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><subject>Vorticity</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFUcFu1DAQtRCVWFo-gJslxIFDythex-tjVbW00kpc4Gw5jq11lY2DJyn0zoczYav2YmvmvXl684axjwIuBYD5igDKmobeBqRtG_uGbcRW6UZouXvLNgToZquFeMfeIz4ACNMauWF_b_5MseZjHGc_cD_2fFyO1AhU4bz0T7wkPh8ir2X2cy7jf87aiLXgWhOe8jDEihwXnOLYx57nkT9mDCUOHucceBqW3CNfCKwc83EaIsdD9JWQ8vuCnSU_YPzw_J-zn7c3P67vmv33b_fXV_smKKXnxnTSWgPtzvpdEiLp6LXaguxsMG0yuy7avlPKauU7A9AFEaQSwvtAlkD16px9Oeke_OAm2trXJ1d8dndXe7f2ACgUyuZREPfTiTvV8muJOLuHstSR7DkpWwkSjAZiiRMrUBpYY3qRFeDWw7jTYUhZufUwztLM52dljxRzqn4MGV8HtZDkQap_2_yO-w</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>ASTRUC, Marianne</creator><creator>VERVOORT, Sylvie</creator><creator>NOUATIN, Hervé O</creator><creator>COUPEZ, Thierry</creator><creator>DE PUYDT, Yves</creator><creator>NAVARD, Patrick</creator><creator>PEUVREL-DISDIER, Edith</creator><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9464-5990</orcidid><orcidid>https://orcid.org/0000-0001-8264-6507</orcidid></search><sort><creationdate>20030901</creationdate><title>Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow</title><author>ASTRUC, Marianne ; VERVOORT, Sylvie ; NOUATIN, Hervé O ; COUPEZ, Thierry ; DE PUYDT, Yves ; NAVARD, Patrick ; PEUVREL-DISDIER, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-7b29970689a8f11f5ea53402b9c76f78be9db33953ab700bc1c2311aacded03d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Agglomerates</topic><topic>Agglomeration</topic><topic>Applied sciences</topic><topic>Axis movements</topic><topic>Carbon black</topic><topic>Compounding ingredients</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Elasticity</topic><topic>Engineering Sciences</topic><topic>Erosion</topic><topic>Exact sciences and technology</topic><topic>Fillers</topic><topic>Fillers and reinforcing agents</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Polymer industry, paints, wood</topic><topic>Rotation</topic><topic>Shear flow</topic><topic>Size reduction</topic><topic>Technology of polymers</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ASTRUC, Marianne</creatorcontrib><creatorcontrib>VERVOORT, Sylvie</creatorcontrib><creatorcontrib>NOUATIN, Hervé O</creatorcontrib><creatorcontrib>COUPEZ, Thierry</creatorcontrib><creatorcontrib>DE PUYDT, Yves</creatorcontrib><creatorcontrib>NAVARD, Patrick</creatorcontrib><creatorcontrib>PEUVREL-DISDIER, Edith</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ASTRUC, Marianne</au><au>VERVOORT, Sylvie</au><au>NOUATIN, Hervé O</au><au>COUPEZ, Thierry</au><au>DE PUYDT, Yves</au><au>NAVARD, Patrick</au><au>PEUVREL-DISDIER, Edith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow</atitle><jtitle>Rheologica acta</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>42</volume><issue>5</issue><spage>421</spage><epage>431</epage><pages>421-431</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><coden>RHEAAK</coden><abstract>When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We&gt;0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00397-003-0296-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9464-5990</orcidid><orcidid>https://orcid.org/0000-0001-8264-6507</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0035-4511
ispartof Rheologica acta, 2003-09, Vol.42 (5), p.421-431
issn 0035-4511
1435-1528
language eng
recordid cdi_hal_primary_oai_HAL_hal_00672001v1
source Springer Nature
subjects Agglomerates
Agglomeration
Applied sciences
Axis movements
Carbon black
Compounding ingredients
Computational fluid dynamics
Computer simulation
Elasticity
Engineering Sciences
Erosion
Exact sciences and technology
Fillers
Fillers and reinforcing agents
Finite element method
Fluid flow
Fluids
Materials
Mathematical models
Polymer industry, paints, wood
Rotation
Shear flow
Size reduction
Technology of polymers
Viscoelastic fluids
Viscoelasticity
Vorticity
title Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20study%20of%20the%20rotation%20and%20the%20erosion%20of%20fillers%20suspended%20in%20viscoelastic%20fluids%20under%20simple%20shear%20flow&rft.jtitle=Rheologica%20acta&rft.au=ASTRUC,%20Marianne&rft.date=2003-09-01&rft.volume=42&rft.issue=5&rft.spage=421&rft.epage=431&rft.pages=421-431&rft.issn=0035-4511&rft.eissn=1435-1528&rft.coden=RHEAAK&rft_id=info:doi/10.1007/s00397-003-0296-9&rft_dat=%3Cproquest_hal_p%3E2262020750%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-7b29970689a8f11f5ea53402b9c76f78be9db33953ab700bc1c2311aacded03d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262020750&rft_id=info:pmid/&rfr_iscdi=true