Loading…
Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow
When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a beh...
Saved in:
Published in: | Rheologica acta 2003-09, Vol.42 (5), p.421-431 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-7b29970689a8f11f5ea53402b9c76f78be9db33953ab700bc1c2311aacded03d3 |
---|---|
cites | |
container_end_page | 431 |
container_issue | 5 |
container_start_page | 421 |
container_title | Rheologica acta |
container_volume | 42 |
creator | ASTRUC, Marianne VERVOORT, Sylvie NOUATIN, Hervé O COUPEZ, Thierry DE PUYDT, Yves NAVARD, Patrick PEUVREL-DISDIER, Edith |
description | When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We>0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid. |
doi_str_mv | 10.1007/s00397-003-0296-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00672001v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262020750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-7b29970689a8f11f5ea53402b9c76f78be9db33953ab700bc1c2311aacded03d3</originalsourceid><addsrcrecordid>eNpFUcFu1DAQtRCVWFo-gJslxIFDythex-tjVbW00kpc4Gw5jq11lY2DJyn0zoczYav2YmvmvXl684axjwIuBYD5igDKmobeBqRtG_uGbcRW6UZouXvLNgToZquFeMfeIz4ACNMauWF_b_5MseZjHGc_cD_2fFyO1AhU4bz0T7wkPh8ir2X2cy7jf87aiLXgWhOe8jDEihwXnOLYx57nkT9mDCUOHucceBqW3CNfCKwc83EaIsdD9JWQ8vuCnSU_YPzw_J-zn7c3P67vmv33b_fXV_smKKXnxnTSWgPtzvpdEiLp6LXaguxsMG0yuy7avlPKauU7A9AFEaQSwvtAlkD16px9Oeke_OAm2trXJ1d8dndXe7f2ACgUyuZREPfTiTvV8muJOLuHstSR7DkpWwkSjAZiiRMrUBpYY3qRFeDWw7jTYUhZufUwztLM52dljxRzqn4MGV8HtZDkQap_2_yO-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262020750</pqid></control><display><type>article</type><title>Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow</title><source>Springer Nature</source><creator>ASTRUC, Marianne ; VERVOORT, Sylvie ; NOUATIN, Hervé O ; COUPEZ, Thierry ; DE PUYDT, Yves ; NAVARD, Patrick ; PEUVREL-DISDIER, Edith</creator><creatorcontrib>ASTRUC, Marianne ; VERVOORT, Sylvie ; NOUATIN, Hervé O ; COUPEZ, Thierry ; DE PUYDT, Yves ; NAVARD, Patrick ; PEUVREL-DISDIER, Edith</creatorcontrib><description>When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We>0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-003-0296-9</identifier><identifier>CODEN: RHEAAK</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Agglomerates ; Agglomeration ; Applied sciences ; Axis movements ; Carbon black ; Compounding ingredients ; Computational fluid dynamics ; Computer simulation ; Elasticity ; Engineering Sciences ; Erosion ; Exact sciences and technology ; Fillers ; Fillers and reinforcing agents ; Finite element method ; Fluid flow ; Fluids ; Materials ; Mathematical models ; Polymer industry, paints, wood ; Rotation ; Shear flow ; Size reduction ; Technology of polymers ; Viscoelastic fluids ; Viscoelasticity ; Vorticity</subject><ispartof>Rheologica acta, 2003-09, Vol.42 (5), p.421-431</ispartof><rights>2004 INIST-CNRS</rights><rights>Rheologica Acta is a copyright of Springer, (2003). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-7b29970689a8f11f5ea53402b9c76f78be9db33953ab700bc1c2311aacded03d3</citedby><orcidid>0000-0001-9464-5990 ; 0000-0001-8264-6507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15122002$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00672001$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>ASTRUC, Marianne</creatorcontrib><creatorcontrib>VERVOORT, Sylvie</creatorcontrib><creatorcontrib>NOUATIN, Hervé O</creatorcontrib><creatorcontrib>COUPEZ, Thierry</creatorcontrib><creatorcontrib>DE PUYDT, Yves</creatorcontrib><creatorcontrib>NAVARD, Patrick</creatorcontrib><creatorcontrib>PEUVREL-DISDIER, Edith</creatorcontrib><title>Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow</title><title>Rheologica acta</title><description>When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We>0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.</description><subject>Agglomerates</subject><subject>Agglomeration</subject><subject>Applied sciences</subject><subject>Axis movements</subject><subject>Carbon black</subject><subject>Compounding ingredients</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Elasticity</subject><subject>Engineering Sciences</subject><subject>Erosion</subject><subject>Exact sciences and technology</subject><subject>Fillers</subject><subject>Fillers and reinforcing agents</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Polymer industry, paints, wood</subject><subject>Rotation</subject><subject>Shear flow</subject><subject>Size reduction</subject><subject>Technology of polymers</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><subject>Vorticity</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFUcFu1DAQtRCVWFo-gJslxIFDythex-tjVbW00kpc4Gw5jq11lY2DJyn0zoczYav2YmvmvXl684axjwIuBYD5igDKmobeBqRtG_uGbcRW6UZouXvLNgToZquFeMfeIz4ACNMauWF_b_5MseZjHGc_cD_2fFyO1AhU4bz0T7wkPh8ir2X2cy7jf87aiLXgWhOe8jDEihwXnOLYx57nkT9mDCUOHucceBqW3CNfCKwc83EaIsdD9JWQ8vuCnSU_YPzw_J-zn7c3P67vmv33b_fXV_smKKXnxnTSWgPtzvpdEiLp6LXaguxsMG0yuy7avlPKauU7A9AFEaQSwvtAlkD16px9Oeke_OAm2trXJ1d8dndXe7f2ACgUyuZREPfTiTvV8muJOLuHstSR7DkpWwkSjAZiiRMrUBpYY3qRFeDWw7jTYUhZufUwztLM52dljxRzqn4MGV8HtZDkQap_2_yO-w</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>ASTRUC, Marianne</creator><creator>VERVOORT, Sylvie</creator><creator>NOUATIN, Hervé O</creator><creator>COUPEZ, Thierry</creator><creator>DE PUYDT, Yves</creator><creator>NAVARD, Patrick</creator><creator>PEUVREL-DISDIER, Edith</creator><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9464-5990</orcidid><orcidid>https://orcid.org/0000-0001-8264-6507</orcidid></search><sort><creationdate>20030901</creationdate><title>Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow</title><author>ASTRUC, Marianne ; VERVOORT, Sylvie ; NOUATIN, Hervé O ; COUPEZ, Thierry ; DE PUYDT, Yves ; NAVARD, Patrick ; PEUVREL-DISDIER, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-7b29970689a8f11f5ea53402b9c76f78be9db33953ab700bc1c2311aacded03d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Agglomerates</topic><topic>Agglomeration</topic><topic>Applied sciences</topic><topic>Axis movements</topic><topic>Carbon black</topic><topic>Compounding ingredients</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Elasticity</topic><topic>Engineering Sciences</topic><topic>Erosion</topic><topic>Exact sciences and technology</topic><topic>Fillers</topic><topic>Fillers and reinforcing agents</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Polymer industry, paints, wood</topic><topic>Rotation</topic><topic>Shear flow</topic><topic>Size reduction</topic><topic>Technology of polymers</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ASTRUC, Marianne</creatorcontrib><creatorcontrib>VERVOORT, Sylvie</creatorcontrib><creatorcontrib>NOUATIN, Hervé O</creatorcontrib><creatorcontrib>COUPEZ, Thierry</creatorcontrib><creatorcontrib>DE PUYDT, Yves</creatorcontrib><creatorcontrib>NAVARD, Patrick</creatorcontrib><creatorcontrib>PEUVREL-DISDIER, Edith</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ASTRUC, Marianne</au><au>VERVOORT, Sylvie</au><au>NOUATIN, Hervé O</au><au>COUPEZ, Thierry</au><au>DE PUYDT, Yves</au><au>NAVARD, Patrick</au><au>PEUVREL-DISDIER, Edith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow</atitle><jtitle>Rheologica acta</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>42</volume><issue>5</issue><spage>421</spage><epage>431</epage><pages>421-431</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><coden>RHEAAK</coden><abstract>When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We>0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00397-003-0296-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9464-5990</orcidid><orcidid>https://orcid.org/0000-0001-8264-6507</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-4511 |
ispartof | Rheologica acta, 2003-09, Vol.42 (5), p.421-431 |
issn | 0035-4511 1435-1528 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00672001v1 |
source | Springer Nature |
subjects | Agglomerates Agglomeration Applied sciences Axis movements Carbon black Compounding ingredients Computational fluid dynamics Computer simulation Elasticity Engineering Sciences Erosion Exact sciences and technology Fillers Fillers and reinforcing agents Finite element method Fluid flow Fluids Materials Mathematical models Polymer industry, paints, wood Rotation Shear flow Size reduction Technology of polymers Viscoelastic fluids Viscoelasticity Vorticity |
title | Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20study%20of%20the%20rotation%20and%20the%20erosion%20of%20fillers%20suspended%20in%20viscoelastic%20fluids%20under%20simple%20shear%20flow&rft.jtitle=Rheologica%20acta&rft.au=ASTRUC,%20Marianne&rft.date=2003-09-01&rft.volume=42&rft.issue=5&rft.spage=421&rft.epage=431&rft.pages=421-431&rft.issn=0035-4511&rft.eissn=1435-1528&rft.coden=RHEAAK&rft_id=info:doi/10.1007/s00397-003-0296-9&rft_dat=%3Cproquest_hal_p%3E2262020750%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-7b29970689a8f11f5ea53402b9c76f78be9db33953ab700bc1c2311aacded03d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2262020750&rft_id=info:pmid/&rfr_iscdi=true |