Loading…

Integral equation methods from grating theory to photonics: an overview and new approaches for conical diffraction

The boundary integral equation method (BIM) was one of the first methods in grating theory. It has been used for the investigation of diffraction gratings of extremely different kinds as well as for photonic crystal diffraction gratings. Besides an overview of three of the most important BIMs for in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modern optics 2011-03, Vol.58 (5-6), p.407-423
Main Authors: Schmidt, Gunther, Kleemann, Bernd H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-1bc86d8e45e9f245e92fff1593a0e6938d106627c008cb195797610bbcc562593
cites cdi_FETCH-LOGICAL-c510t-1bc86d8e45e9f245e92fff1593a0e6938d106627c008cb195797610bbcc562593
container_end_page 423
container_issue 5-6
container_start_page 407
container_title Journal of modern optics
container_volume 58
creator Schmidt, Gunther
Kleemann, Bernd H.
description The boundary integral equation method (BIM) was one of the first methods in grating theory. It has been used for the investigation of diffraction gratings of extremely different kinds as well as for photonic crystal diffraction gratings. Besides an overview of three of the most important BIMs for in-plane diffraction, we present a new BIM for gratings in a conical mounting with one profile as well as for separated multilayer gratings with photonics inclusions using a common description for both approaches. In numerical examples, (1) blazing in conical mounting is demonstrated at a photonic crystal diffraction grating, (2) the excellent conical efficiency convergence for a plasmonic structure of two stacked silver rod gratings is shown, and (3) the transmission for conical incidence is studied at a blazed grating with large period-to-wavelength ratio.
doi_str_mv 10.1080/09500340.2010.538734
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00685375v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919906473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-1bc86d8e45e9f245e92fff1593a0e6938d106627c008cb195797610bbcc562593</originalsourceid><addsrcrecordid>eNqFks9vFCEUxyfGJq6t_4EH4sV4mPqAgQEvpmnUNtnES3smLAMdmhnYArvN_vcyGfXgwV545PF5X96vpnmP4RKDgM8gGQDt4JJAdTEqetq9ajaYctJS6LrXzWZB2oV507zN-REAOFCyadJtKPYh6QnZp4MuPgY02zLGISOX4ozqU_HhAZXRxnRCJaL9GEsM3uQvSAcUjzYdvX2u9wGFxe73KWoz2ioQEzILWtUH71zSZvngojlzesr23W973tx__3Z3fdNuf_64vb7atoZhKC3eGcEHYTtmpSPLSZxzmEmqwXJJxYCBc9IbAGF2WLJe9hzDbmcM46Ri582nVXfUk9onP-t0UlF7dXO1VYuv9kAw2rMjruzHla3JPx1sLmr22dhp0sHGQ1YSSwm86-nLJGDOiOzFi6SQvGYNfV_JD_-Qj_GQQm2OErWQmiRhFepWyKSYc7Lub00Y1LIG6s8aqGUN1LoGNezrGuZDncesn2OaBlX0aYqpTiQYnxX9r8IvZDO3vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859385325</pqid></control><display><type>article</type><title>Integral equation methods from grating theory to photonics: an overview and new approaches for conical diffraction</title><source>Taylor and Francis Science and Technology Collection</source><creator>Schmidt, Gunther ; Kleemann, Bernd H.</creator><creatorcontrib>Schmidt, Gunther ; Kleemann, Bernd H.</creatorcontrib><description>The boundary integral equation method (BIM) was one of the first methods in grating theory. It has been used for the investigation of diffraction gratings of extremely different kinds as well as for photonic crystal diffraction gratings. Besides an overview of three of the most important BIMs for in-plane diffraction, we present a new BIM for gratings in a conical mounting with one profile as well as for separated multilayer gratings with photonics inclusions using a common description for both approaches. In numerical examples, (1) blazing in conical mounting is demonstrated at a photonic crystal diffraction grating, (2) the excellent conical efficiency convergence for a plasmonic structure of two stacked silver rod gratings is shown, and (3) the transmission for conical incidence is studied at a blazed grating with large period-to-wavelength ratio.</description><identifier>ISSN: 0950-0340</identifier><identifier>EISSN: 1362-3044</identifier><identifier>DOI: 10.1080/09500340.2010.538734</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Atoms &amp; subatomic particles ; conical diffraction ; Crystals ; Diffraction ; Diffraction gratings ; Engineering Sciences ; Gratings (spectra) ; integral equation method ; Integral equations ; Mathematical models ; Mounting ; Optics ; Photonic ; photonic crystal gratings ; Photonic crystals ; Photonics ; plasmonic multilayer gratings ; Plasmonics</subject><ispartof>Journal of modern optics, 2011-03, Vol.58 (5-6), p.407-423</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>Copyright Taylor &amp; Francis Ltd. Mar 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-1bc86d8e45e9f245e92fff1593a0e6938d106627c008cb195797610bbcc562593</citedby><cites>FETCH-LOGICAL-c510t-1bc86d8e45e9f245e92fff1593a0e6938d106627c008cb195797610bbcc562593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00685375$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Gunther</creatorcontrib><creatorcontrib>Kleemann, Bernd H.</creatorcontrib><title>Integral equation methods from grating theory to photonics: an overview and new approaches for conical diffraction</title><title>Journal of modern optics</title><description>The boundary integral equation method (BIM) was one of the first methods in grating theory. It has been used for the investigation of diffraction gratings of extremely different kinds as well as for photonic crystal diffraction gratings. Besides an overview of three of the most important BIMs for in-plane diffraction, we present a new BIM for gratings in a conical mounting with one profile as well as for separated multilayer gratings with photonics inclusions using a common description for both approaches. In numerical examples, (1) blazing in conical mounting is demonstrated at a photonic crystal diffraction grating, (2) the excellent conical efficiency convergence for a plasmonic structure of two stacked silver rod gratings is shown, and (3) the transmission for conical incidence is studied at a blazed grating with large period-to-wavelength ratio.</description><subject>Atoms &amp; subatomic particles</subject><subject>conical diffraction</subject><subject>Crystals</subject><subject>Diffraction</subject><subject>Diffraction gratings</subject><subject>Engineering Sciences</subject><subject>Gratings (spectra)</subject><subject>integral equation method</subject><subject>Integral equations</subject><subject>Mathematical models</subject><subject>Mounting</subject><subject>Optics</subject><subject>Photonic</subject><subject>photonic crystal gratings</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>plasmonic multilayer gratings</subject><subject>Plasmonics</subject><issn>0950-0340</issn><issn>1362-3044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFks9vFCEUxyfGJq6t_4EH4sV4mPqAgQEvpmnUNtnES3smLAMdmhnYArvN_vcyGfXgwV545PF5X96vpnmP4RKDgM8gGQDt4JJAdTEqetq9ajaYctJS6LrXzWZB2oV507zN-REAOFCyadJtKPYh6QnZp4MuPgY02zLGISOX4ozqU_HhAZXRxnRCJaL9GEsM3uQvSAcUjzYdvX2u9wGFxe73KWoz2ioQEzILWtUH71zSZvngojlzesr23W973tx__3Z3fdNuf_64vb7atoZhKC3eGcEHYTtmpSPLSZxzmEmqwXJJxYCBc9IbAGF2WLJe9hzDbmcM46Ri582nVXfUk9onP-t0UlF7dXO1VYuv9kAw2rMjruzHla3JPx1sLmr22dhp0sHGQ1YSSwm86-nLJGDOiOzFi6SQvGYNfV_JD_-Qj_GQQm2OErWQmiRhFepWyKSYc7Lub00Y1LIG6s8aqGUN1LoGNezrGuZDncesn2OaBlX0aYqpTiQYnxX9r8IvZDO3vQ</recordid><startdate>20110310</startdate><enddate>20110310</enddate><creator>Schmidt, Gunther</creator><creator>Kleemann, Bernd H.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110310</creationdate><title>Integral equation methods from grating theory to photonics: an overview and new approaches for conical diffraction</title><author>Schmidt, Gunther ; Kleemann, Bernd H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-1bc86d8e45e9f245e92fff1593a0e6938d106627c008cb195797610bbcc562593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>conical diffraction</topic><topic>Crystals</topic><topic>Diffraction</topic><topic>Diffraction gratings</topic><topic>Engineering Sciences</topic><topic>Gratings (spectra)</topic><topic>integral equation method</topic><topic>Integral equations</topic><topic>Mathematical models</topic><topic>Mounting</topic><topic>Optics</topic><topic>Photonic</topic><topic>photonic crystal gratings</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>plasmonic multilayer gratings</topic><topic>Plasmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Gunther</creatorcontrib><creatorcontrib>Kleemann, Bernd H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of modern optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Gunther</au><au>Kleemann, Bernd H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral equation methods from grating theory to photonics: an overview and new approaches for conical diffraction</atitle><jtitle>Journal of modern optics</jtitle><date>2011-03-10</date><risdate>2011</risdate><volume>58</volume><issue>5-6</issue><spage>407</spage><epage>423</epage><pages>407-423</pages><issn>0950-0340</issn><eissn>1362-3044</eissn><abstract>The boundary integral equation method (BIM) was one of the first methods in grating theory. It has been used for the investigation of diffraction gratings of extremely different kinds as well as for photonic crystal diffraction gratings. Besides an overview of three of the most important BIMs for in-plane diffraction, we present a new BIM for gratings in a conical mounting with one profile as well as for separated multilayer gratings with photonics inclusions using a common description for both approaches. In numerical examples, (1) blazing in conical mounting is demonstrated at a photonic crystal diffraction grating, (2) the excellent conical efficiency convergence for a plasmonic structure of two stacked silver rod gratings is shown, and (3) the transmission for conical incidence is studied at a blazed grating with large period-to-wavelength ratio.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/09500340.2010.538734</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-0340
ispartof Journal of modern optics, 2011-03, Vol.58 (5-6), p.407-423
issn 0950-0340
1362-3044
language eng
recordid cdi_hal_primary_oai_HAL_hal_00685375v1
source Taylor and Francis Science and Technology Collection
subjects Atoms & subatomic particles
conical diffraction
Crystals
Diffraction
Diffraction gratings
Engineering Sciences
Gratings (spectra)
integral equation method
Integral equations
Mathematical models
Mounting
Optics
Photonic
photonic crystal gratings
Photonic crystals
Photonics
plasmonic multilayer gratings
Plasmonics
title Integral equation methods from grating theory to photonics: an overview and new approaches for conical diffraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20equation%20methods%20from%20grating%20theory%20to%20photonics:%20an%20overview%20and%20new%20approaches%20for%20conical%20diffraction&rft.jtitle=Journal%20of%20modern%20optics&rft.au=Schmidt,%20Gunther&rft.date=2011-03-10&rft.volume=58&rft.issue=5-6&rft.spage=407&rft.epage=423&rft.pages=407-423&rft.issn=0950-0340&rft.eissn=1362-3044&rft_id=info:doi/10.1080/09500340.2010.538734&rft_dat=%3Cproquest_hal_p%3E919906473%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-1bc86d8e45e9f245e92fff1593a0e6938d106627c008cb195797610bbcc562593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=859385325&rft_id=info:pmid/&rfr_iscdi=true