Loading…

A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation

This paper introduces a new numerical hybrid method to simulate transient wave propagation in a multilayer semi-infinite medium, which can be fluid or solid, subjected to given transient loads. The medium is constituted of a finite number of unbounded layers with finite thicknesses. The method has a...

Full description

Saved in:
Bibliographic Details
Published in:Wave motion 2008, Vol.45 (4), p.383-399
Main Authors: Desceliers, C., Soize, C., Grimal, Q., Haiat, G., Naili, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403
cites cdi_FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403
container_end_page 399
container_issue 4
container_start_page 383
container_title Wave motion
container_volume 45
creator Desceliers, C.
Soize, C.
Grimal, Q.
Haiat, G.
Naili, S.
description This paper introduces a new numerical hybrid method to simulate transient wave propagation in a multilayer semi-infinite medium, which can be fluid or solid, subjected to given transient loads. The medium is constituted of a finite number of unbounded layers with finite thicknesses. The method has a low numerical cost and is relatively straightforward to implement, as opposed to most available numerical techniques devoted to similar problems. The proposed method is based on a time-domain formulation associated with a 2D-space Fourier transform for the variables associated with the two infinite dimensions and uses a finite element approximation in the direction perpendicular to the layers. An illustration of the method is given for an elasto-acoustic wave propagation problem: a three-layer medium constituted of an elastic layer sandwiched between two acoustic fluid layers and excited by an acoustic line source located in one fluid layer.
doi_str_mv 10.1016/j.wavemoti.2007.09.001
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00686136v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212507000947</els_id><sourcerecordid>oai_HAL_hal_00686136v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403</originalsourceid><addsrcrecordid>eNqFkc1uFDEQhC1EJJYNr4B84cBhhrY9vzdWERCklbgQKTer42mzXs2MR7azYR-DN8bDQq6cLNlVX7urGHsroBQgmg_H8glPNPnkSgnQltCXAOIF24iu7YpKqfuXbJOFdSGFrF-x1zEeISta1W_Yrx1PbqJi8BO6mU-UDn7gyfPoxxPxFHCOjubEacSYnOHrLL4Ev-APTM7PPLuQT49jciOeKWTE4B4n_uTSIT8czg_BDTwuZDJrLKybXaJMo2mlxgUNcVwy8Keb_gCv2ZXFMdKbv-eW3X3-9P3mtth_-_L1ZrcvTCWrVJi8gRpkb-pGIoFpW7R1hapV0PRgrLBdZ4bKqk48DMqSFGgVtF2vpGr7CtSWvb9wDzjqJeTp4aw9On272-v1DqDpGqGak8ja5qI1wccYyD4bBOi1BH3U_0rQawkaer1-cMveXYwLRoOjzXEaF5_dEmQNSqy6jxcd5Y1PjoKOJsducpYhJ6cH7_436jf0I6OK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation</title><source>ScienceDirect Journals</source><creator>Desceliers, C. ; Soize, C. ; Grimal, Q. ; Haiat, G. ; Naili, S.</creator><creatorcontrib>Desceliers, C. ; Soize, C. ; Grimal, Q. ; Haiat, G. ; Naili, S.</creatorcontrib><description>This paper introduces a new numerical hybrid method to simulate transient wave propagation in a multilayer semi-infinite medium, which can be fluid or solid, subjected to given transient loads. The medium is constituted of a finite number of unbounded layers with finite thicknesses. The method has a low numerical cost and is relatively straightforward to implement, as opposed to most available numerical techniques devoted to similar problems. The proposed method is based on a time-domain formulation associated with a 2D-space Fourier transform for the variables associated with the two infinite dimensions and uses a finite element approximation in the direction perpendicular to the layers. An illustration of the method is given for an elasto-acoustic wave propagation problem: a three-layer medium constituted of an elastic layer sandwiched between two acoustic fluid layers and excited by an acoustic line source located in one fluid layer.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2007.09.001</identifier><identifier>CODEN: WAMOD9</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustics ; Biomechanics ; Elastic and acoustic waves ; Engineering Sciences ; Exact sciences and technology ; Finite element ; Fundamental areas of phenomenology (including applications) ; Low numerical cost ; Mathematical methods in physics ; Mechanics ; Multilayers ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Time-domain ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations</subject><ispartof>Wave motion, 2008, Vol.45 (4), p.383-399</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403</citedby><cites>FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403</cites><orcidid>0000-0003-1724-9083 ; 0000-0001-5184-6864 ; 0000-0001-9041-8176 ; 0000-0002-1083-6771 ; 0000-0001-7153-0840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20250311$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00686136$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Desceliers, C.</creatorcontrib><creatorcontrib>Soize, C.</creatorcontrib><creatorcontrib>Grimal, Q.</creatorcontrib><creatorcontrib>Haiat, G.</creatorcontrib><creatorcontrib>Naili, S.</creatorcontrib><title>A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation</title><title>Wave motion</title><description>This paper introduces a new numerical hybrid method to simulate transient wave propagation in a multilayer semi-infinite medium, which can be fluid or solid, subjected to given transient loads. The medium is constituted of a finite number of unbounded layers with finite thicknesses. The method has a low numerical cost and is relatively straightforward to implement, as opposed to most available numerical techniques devoted to similar problems. The proposed method is based on a time-domain formulation associated with a 2D-space Fourier transform for the variables associated with the two infinite dimensions and uses a finite element approximation in the direction perpendicular to the layers. An illustration of the method is given for an elasto-acoustic wave propagation problem: a three-layer medium constituted of an elastic layer sandwiched between two acoustic fluid layers and excited by an acoustic line source located in one fluid layer.</description><subject>Acoustics</subject><subject>Biomechanics</subject><subject>Elastic and acoustic waves</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Finite element</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Low numerical cost</subject><subject>Mathematical methods in physics</subject><subject>Mechanics</subject><subject>Multilayers</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Time-domain</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uFDEQhC1EJJYNr4B84cBhhrY9vzdWERCklbgQKTer42mzXs2MR7azYR-DN8bDQq6cLNlVX7urGHsroBQgmg_H8glPNPnkSgnQltCXAOIF24iu7YpKqfuXbJOFdSGFrF-x1zEeISta1W_Yrx1PbqJi8BO6mU-UDn7gyfPoxxPxFHCOjubEacSYnOHrLL4Ev-APTM7PPLuQT49jciOeKWTE4B4n_uTSIT8czg_BDTwuZDJrLKybXaJMo2mlxgUNcVwy8Keb_gCv2ZXFMdKbv-eW3X3-9P3mtth_-_L1ZrcvTCWrVJi8gRpkb-pGIoFpW7R1hapV0PRgrLBdZ4bKqk48DMqSFGgVtF2vpGr7CtSWvb9wDzjqJeTp4aw9On272-v1DqDpGqGak8ja5qI1wccYyD4bBOi1BH3U_0rQawkaer1-cMveXYwLRoOjzXEaF5_dEmQNSqy6jxcd5Y1PjoKOJsducpYhJ6cH7_436jf0I6OK</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Desceliers, C.</creator><creator>Soize, C.</creator><creator>Grimal, Q.</creator><creator>Haiat, G.</creator><creator>Naili, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1724-9083</orcidid><orcidid>https://orcid.org/0000-0001-5184-6864</orcidid><orcidid>https://orcid.org/0000-0001-9041-8176</orcidid><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid><orcidid>https://orcid.org/0000-0001-7153-0840</orcidid></search><sort><creationdate>2008</creationdate><title>A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation</title><author>Desceliers, C. ; Soize, C. ; Grimal, Q. ; Haiat, G. ; Naili, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustics</topic><topic>Biomechanics</topic><topic>Elastic and acoustic waves</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Finite element</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Low numerical cost</topic><topic>Mathematical methods in physics</topic><topic>Mechanics</topic><topic>Multilayers</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Time-domain</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desceliers, C.</creatorcontrib><creatorcontrib>Soize, C.</creatorcontrib><creatorcontrib>Grimal, Q.</creatorcontrib><creatorcontrib>Haiat, G.</creatorcontrib><creatorcontrib>Naili, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desceliers, C.</au><au>Soize, C.</au><au>Grimal, Q.</au><au>Haiat, G.</au><au>Naili, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation</atitle><jtitle>Wave motion</jtitle><date>2008</date><risdate>2008</risdate><volume>45</volume><issue>4</issue><spage>383</spage><epage>399</epage><pages>383-399</pages><issn>0165-2125</issn><eissn>1878-433X</eissn><coden>WAMOD9</coden><abstract>This paper introduces a new numerical hybrid method to simulate transient wave propagation in a multilayer semi-infinite medium, which can be fluid or solid, subjected to given transient loads. The medium is constituted of a finite number of unbounded layers with finite thicknesses. The method has a low numerical cost and is relatively straightforward to implement, as opposed to most available numerical techniques devoted to similar problems. The proposed method is based on a time-domain formulation associated with a 2D-space Fourier transform for the variables associated with the two infinite dimensions and uses a finite element approximation in the direction perpendicular to the layers. An illustration of the method is given for an elasto-acoustic wave propagation problem: a three-layer medium constituted of an elastic layer sandwiched between two acoustic fluid layers and excited by an acoustic line source located in one fluid layer.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2007.09.001</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1724-9083</orcidid><orcidid>https://orcid.org/0000-0001-5184-6864</orcidid><orcidid>https://orcid.org/0000-0001-9041-8176</orcidid><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid><orcidid>https://orcid.org/0000-0001-7153-0840</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-2125
ispartof Wave motion, 2008, Vol.45 (4), p.383-399
issn 0165-2125
1878-433X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00686136v1
source ScienceDirect Journals
subjects Acoustics
Biomechanics
Elastic and acoustic waves
Engineering Sciences
Exact sciences and technology
Finite element
Fundamental areas of phenomenology (including applications)
Low numerical cost
Mathematical methods in physics
Mechanics
Multilayers
Numerical approximation and analysis
Ordinary and partial differential equations, boundary value problems
Physics
Solid mechanics
Structural and continuum mechanics
Time-domain
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations
title A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time-domain%20method%20to%20solve%20transient%20elastic%20wave%20propagation%20in%20a%20multilayer%20medium%20with%20a%20hybrid%20spectral-finite%20element%20space%20approximation&rft.jtitle=Wave%20motion&rft.au=Desceliers,%20C.&rft.date=2008&rft.volume=45&rft.issue=4&rft.spage=383&rft.epage=399&rft.pages=383-399&rft.issn=0165-2125&rft.eissn=1878-433X&rft.coden=WAMOD9&rft_id=info:doi/10.1016/j.wavemoti.2007.09.001&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00686136v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true