Loading…
A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation
This paper introduces a new numerical hybrid method to simulate transient wave propagation in a multilayer semi-infinite medium, which can be fluid or solid, subjected to given transient loads. The medium is constituted of a finite number of unbounded layers with finite thicknesses. The method has a...
Saved in:
Published in: | Wave motion 2008, Vol.45 (4), p.383-399 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403 |
container_end_page | 399 |
container_issue | 4 |
container_start_page | 383 |
container_title | Wave motion |
container_volume | 45 |
creator | Desceliers, C. Soize, C. Grimal, Q. Haiat, G. Naili, S. |
description | This paper introduces a new numerical hybrid method to simulate transient wave propagation in a multilayer semi-infinite medium, which can be fluid or solid, subjected to given transient loads. The medium is constituted of a finite number of unbounded layers with finite thicknesses. The method has a low numerical cost and is relatively straightforward to implement, as opposed to most available numerical techniques devoted to similar problems. The proposed method is based on a time-domain formulation associated with a 2D-space Fourier transform for the variables associated with the two infinite dimensions and uses a finite element approximation in the direction perpendicular to the layers. An illustration of the method is given for an elasto-acoustic wave propagation problem: a three-layer medium constituted of an elastic layer sandwiched between two acoustic fluid layers and excited by an acoustic line source located in one fluid layer. |
doi_str_mv | 10.1016/j.wavemoti.2007.09.001 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00686136v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212507000947</els_id><sourcerecordid>oai_HAL_hal_00686136v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403</originalsourceid><addsrcrecordid>eNqFkc1uFDEQhC1EJJYNr4B84cBhhrY9vzdWERCklbgQKTer42mzXs2MR7azYR-DN8bDQq6cLNlVX7urGHsroBQgmg_H8glPNPnkSgnQltCXAOIF24iu7YpKqfuXbJOFdSGFrF-x1zEeISta1W_Yrx1PbqJi8BO6mU-UDn7gyfPoxxPxFHCOjubEacSYnOHrLL4Ev-APTM7PPLuQT49jciOeKWTE4B4n_uTSIT8czg_BDTwuZDJrLKybXaJMo2mlxgUNcVwy8Keb_gCv2ZXFMdKbv-eW3X3-9P3mtth_-_L1ZrcvTCWrVJi8gRpkb-pGIoFpW7R1hapV0PRgrLBdZ4bKqk48DMqSFGgVtF2vpGr7CtSWvb9wDzjqJeTp4aw9On272-v1DqDpGqGak8ja5qI1wccYyD4bBOi1BH3U_0rQawkaer1-cMveXYwLRoOjzXEaF5_dEmQNSqy6jxcd5Y1PjoKOJsducpYhJ6cH7_436jf0I6OK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation</title><source>ScienceDirect Journals</source><creator>Desceliers, C. ; Soize, C. ; Grimal, Q. ; Haiat, G. ; Naili, S.</creator><creatorcontrib>Desceliers, C. ; Soize, C. ; Grimal, Q. ; Haiat, G. ; Naili, S.</creatorcontrib><description>This paper introduces a new numerical hybrid method to simulate transient wave propagation in a multilayer semi-infinite medium, which can be fluid or solid, subjected to given transient loads. The medium is constituted of a finite number of unbounded layers with finite thicknesses. The method has a low numerical cost and is relatively straightforward to implement, as opposed to most available numerical techniques devoted to similar problems. The proposed method is based on a time-domain formulation associated with a 2D-space Fourier transform for the variables associated with the two infinite dimensions and uses a finite element approximation in the direction perpendicular to the layers. An illustration of the method is given for an elasto-acoustic wave propagation problem: a three-layer medium constituted of an elastic layer sandwiched between two acoustic fluid layers and excited by an acoustic line source located in one fluid layer.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2007.09.001</identifier><identifier>CODEN: WAMOD9</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustics ; Biomechanics ; Elastic and acoustic waves ; Engineering Sciences ; Exact sciences and technology ; Finite element ; Fundamental areas of phenomenology (including applications) ; Low numerical cost ; Mathematical methods in physics ; Mechanics ; Multilayers ; Numerical approximation and analysis ; Ordinary and partial differential equations, boundary value problems ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Time-domain ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations</subject><ispartof>Wave motion, 2008, Vol.45 (4), p.383-399</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403</citedby><cites>FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403</cites><orcidid>0000-0003-1724-9083 ; 0000-0001-5184-6864 ; 0000-0001-9041-8176 ; 0000-0002-1083-6771 ; 0000-0001-7153-0840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20250311$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00686136$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Desceliers, C.</creatorcontrib><creatorcontrib>Soize, C.</creatorcontrib><creatorcontrib>Grimal, Q.</creatorcontrib><creatorcontrib>Haiat, G.</creatorcontrib><creatorcontrib>Naili, S.</creatorcontrib><title>A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation</title><title>Wave motion</title><description>This paper introduces a new numerical hybrid method to simulate transient wave propagation in a multilayer semi-infinite medium, which can be fluid or solid, subjected to given transient loads. The medium is constituted of a finite number of unbounded layers with finite thicknesses. The method has a low numerical cost and is relatively straightforward to implement, as opposed to most available numerical techniques devoted to similar problems. The proposed method is based on a time-domain formulation associated with a 2D-space Fourier transform for the variables associated with the two infinite dimensions and uses a finite element approximation in the direction perpendicular to the layers. An illustration of the method is given for an elasto-acoustic wave propagation problem: a three-layer medium constituted of an elastic layer sandwiched between two acoustic fluid layers and excited by an acoustic line source located in one fluid layer.</description><subject>Acoustics</subject><subject>Biomechanics</subject><subject>Elastic and acoustic waves</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Finite element</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Low numerical cost</subject><subject>Mathematical methods in physics</subject><subject>Mechanics</subject><subject>Multilayers</subject><subject>Numerical approximation and analysis</subject><subject>Ordinary and partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Time-domain</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uFDEQhC1EJJYNr4B84cBhhrY9vzdWERCklbgQKTer42mzXs2MR7azYR-DN8bDQq6cLNlVX7urGHsroBQgmg_H8glPNPnkSgnQltCXAOIF24iu7YpKqfuXbJOFdSGFrF-x1zEeISta1W_Yrx1PbqJi8BO6mU-UDn7gyfPoxxPxFHCOjubEacSYnOHrLL4Ev-APTM7PPLuQT49jciOeKWTE4B4n_uTSIT8czg_BDTwuZDJrLKybXaJMo2mlxgUNcVwy8Keb_gCv2ZXFMdKbv-eW3X3-9P3mtth_-_L1ZrcvTCWrVJi8gRpkb-pGIoFpW7R1hapV0PRgrLBdZ4bKqk48DMqSFGgVtF2vpGr7CtSWvb9wDzjqJeTp4aw9On272-v1DqDpGqGak8ja5qI1wccYyD4bBOi1BH3U_0rQawkaer1-cMveXYwLRoOjzXEaF5_dEmQNSqy6jxcd5Y1PjoKOJsducpYhJ6cH7_436jf0I6OK</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Desceliers, C.</creator><creator>Soize, C.</creator><creator>Grimal, Q.</creator><creator>Haiat, G.</creator><creator>Naili, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1724-9083</orcidid><orcidid>https://orcid.org/0000-0001-5184-6864</orcidid><orcidid>https://orcid.org/0000-0001-9041-8176</orcidid><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid><orcidid>https://orcid.org/0000-0001-7153-0840</orcidid></search><sort><creationdate>2008</creationdate><title>A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation</title><author>Desceliers, C. ; Soize, C. ; Grimal, Q. ; Haiat, G. ; Naili, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustics</topic><topic>Biomechanics</topic><topic>Elastic and acoustic waves</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Finite element</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Low numerical cost</topic><topic>Mathematical methods in physics</topic><topic>Mechanics</topic><topic>Multilayers</topic><topic>Numerical approximation and analysis</topic><topic>Ordinary and partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Time-domain</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desceliers, C.</creatorcontrib><creatorcontrib>Soize, C.</creatorcontrib><creatorcontrib>Grimal, Q.</creatorcontrib><creatorcontrib>Haiat, G.</creatorcontrib><creatorcontrib>Naili, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desceliers, C.</au><au>Soize, C.</au><au>Grimal, Q.</au><au>Haiat, G.</au><au>Naili, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation</atitle><jtitle>Wave motion</jtitle><date>2008</date><risdate>2008</risdate><volume>45</volume><issue>4</issue><spage>383</spage><epage>399</epage><pages>383-399</pages><issn>0165-2125</issn><eissn>1878-433X</eissn><coden>WAMOD9</coden><abstract>This paper introduces a new numerical hybrid method to simulate transient wave propagation in a multilayer semi-infinite medium, which can be fluid or solid, subjected to given transient loads. The medium is constituted of a finite number of unbounded layers with finite thicknesses. The method has a low numerical cost and is relatively straightforward to implement, as opposed to most available numerical techniques devoted to similar problems. The proposed method is based on a time-domain formulation associated with a 2D-space Fourier transform for the variables associated with the two infinite dimensions and uses a finite element approximation in the direction perpendicular to the layers. An illustration of the method is given for an elasto-acoustic wave propagation problem: a three-layer medium constituted of an elastic layer sandwiched between two acoustic fluid layers and excited by an acoustic line source located in one fluid layer.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2007.09.001</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1724-9083</orcidid><orcidid>https://orcid.org/0000-0001-5184-6864</orcidid><orcidid>https://orcid.org/0000-0001-9041-8176</orcidid><orcidid>https://orcid.org/0000-0002-1083-6771</orcidid><orcidid>https://orcid.org/0000-0001-7153-0840</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-2125 |
ispartof | Wave motion, 2008, Vol.45 (4), p.383-399 |
issn | 0165-2125 1878-433X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00686136v1 |
source | ScienceDirect Journals |
subjects | Acoustics Biomechanics Elastic and acoustic waves Engineering Sciences Exact sciences and technology Finite element Fundamental areas of phenomenology (including applications) Low numerical cost Mathematical methods in physics Mechanics Multilayers Numerical approximation and analysis Ordinary and partial differential equations, boundary value problems Physics Solid mechanics Structural and continuum mechanics Time-domain Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vibrations |
title | A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time-domain%20method%20to%20solve%20transient%20elastic%20wave%20propagation%20in%20a%20multilayer%20medium%20with%20a%20hybrid%20spectral-finite%20element%20space%20approximation&rft.jtitle=Wave%20motion&rft.au=Desceliers,%20C.&rft.date=2008&rft.volume=45&rft.issue=4&rft.spage=383&rft.epage=399&rft.pages=383-399&rft.issn=0165-2125&rft.eissn=1878-433X&rft.coden=WAMOD9&rft_id=info:doi/10.1016/j.wavemoti.2007.09.001&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00686136v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-c0013d29c562ae0c77af54a3730690cf1f88cd4f381bd3fe21af3078932379403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |