Loading…
Correlation and Brascamp-Lieb Inequalities for Markov Semigroups
This paper builds upon several recent works, where semigroup proofs of Brascamp-Lieb inequalities are provided in various settings (Euclidean space, spheres, and symmetric groups). Our aim is two-fold. Firstly, we provide a general, unifying, framework based on Markov generators, in order to cover a...
Saved in:
Published in: | International mathematics research notices 2011-01 (10), p.2177-2216 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-d605d335f7c616a7236c0da3a31ecef5e68a9b00e24281d91c395d3e97daa7b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-d605d335f7c616a7236c0da3a31ecef5e68a9b00e24281d91c395d3e97daa7b83 |
container_end_page | 2216 |
container_issue | 10 |
container_start_page | 2177 |
container_title | International mathematics research notices |
container_volume | |
creator | Barthe, F. Cordero-Erausquin, D. Ledoux, M. Maurey, B. |
description | This paper builds upon several recent works, where semigroup proofs of Brascamp-Lieb inequalities are provided in various settings (Euclidean space, spheres, and symmetric groups). Our aim is two-fold. Firstly, we provide a general, unifying, framework based on Markov generators, in order to cover a variety of examples of interest going beyond previous investigations. Secondly, we put forward the combinatorial reasons for which unexpected exponents occur in these inequalities. Related superadditivity of information and entropy inequalities are also studied. |
doi_str_mv | 10.1093/imrn/rnq114 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00693000v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00693000v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d605d335f7c616a7236c0da3a31ecef5e68a9b00e24281d91c395d3e97daa7b83</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EEqUw8QeyIhT6nNfa8UapCq0UxADM1ovjgCGJUzutxL-nVRHTnU53N3yMXXO446Bw4trQTUK34Xx6wkZc5DKFbCpP9x4kplJl-Tm7iPELIAOe44jdL3wItqHB-S6hrkoeAkVDbZ8WzpbJurObLTVucDYmtQ_JM4Vvv0tebes-gt_28ZKd1dREe_WnY_b-uHxbrNLi5Wm9mBepQcQhrQTMKsRZLY3ggmSGwkBFSMitsfXMipxUCWCzaZbzSnGDaj-wSlZEssxxzG6Ov5_U6D64lsKP9uT0al7oQwYgFALAju-7t8euCT7GYOv_AQd9AKUPoPQRFP4CcnBcvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Correlation and Brascamp-Lieb Inequalities for Markov Semigroups</title><source>Oxford Journals Online</source><creator>Barthe, F. ; Cordero-Erausquin, D. ; Ledoux, M. ; Maurey, B.</creator><creatorcontrib>Barthe, F. ; Cordero-Erausquin, D. ; Ledoux, M. ; Maurey, B.</creatorcontrib><description>This paper builds upon several recent works, where semigroup proofs of Brascamp-Lieb inequalities are provided in various settings (Euclidean space, spheres, and symmetric groups). Our aim is two-fold. Firstly, we provide a general, unifying, framework based on Markov generators, in order to cover a variety of examples of interest going beyond previous investigations. Secondly, we put forward the combinatorial reasons for which unexpected exponents occur in these inequalities. Related superadditivity of information and entropy inequalities are also studied.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnq114</identifier><language>eng</language><publisher>Oxford University Press (OUP)</publisher><subject>Mathematical Physics ; Mathematics</subject><ispartof>International mathematics research notices, 2011-01 (10), p.2177-2216</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d605d335f7c616a7236c0da3a31ecef5e68a9b00e24281d91c395d3e97daa7b83</citedby><cites>FETCH-LOGICAL-c333t-d605d335f7c616a7236c0da3a31ecef5e68a9b00e24281d91c395d3e97daa7b83</cites><orcidid>0000-0003-0104-0816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00693000$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barthe, F.</creatorcontrib><creatorcontrib>Cordero-Erausquin, D.</creatorcontrib><creatorcontrib>Ledoux, M.</creatorcontrib><creatorcontrib>Maurey, B.</creatorcontrib><title>Correlation and Brascamp-Lieb Inequalities for Markov Semigroups</title><title>International mathematics research notices</title><description>This paper builds upon several recent works, where semigroup proofs of Brascamp-Lieb inequalities are provided in various settings (Euclidean space, spheres, and symmetric groups). Our aim is two-fold. Firstly, we provide a general, unifying, framework based on Markov generators, in order to cover a variety of examples of interest going beyond previous investigations. Secondly, we put forward the combinatorial reasons for which unexpected exponents occur in these inequalities. Related superadditivity of information and entropy inequalities are also studied.</description><subject>Mathematical Physics</subject><subject>Mathematics</subject><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAUhC0EEqUw8QeyIhT6nNfa8UapCq0UxADM1ovjgCGJUzutxL-nVRHTnU53N3yMXXO446Bw4trQTUK34Xx6wkZc5DKFbCpP9x4kplJl-Tm7iPELIAOe44jdL3wItqHB-S6hrkoeAkVDbZ8WzpbJurObLTVucDYmtQ_JM4Vvv0tebes-gt_28ZKd1dREe_WnY_b-uHxbrNLi5Wm9mBepQcQhrQTMKsRZLY3ggmSGwkBFSMitsfXMipxUCWCzaZbzSnGDaj-wSlZEssxxzG6Ov5_U6D64lsKP9uT0al7oQwYgFALAju-7t8euCT7GYOv_AQd9AKUPoPQRFP4CcnBcvg</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Barthe, F.</creator><creator>Cordero-Erausquin, D.</creator><creator>Ledoux, M.</creator><creator>Maurey, B.</creator><general>Oxford University Press (OUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0104-0816</orcidid></search><sort><creationdate>20110101</creationdate><title>Correlation and Brascamp-Lieb Inequalities for Markov Semigroups</title><author>Barthe, F. ; Cordero-Erausquin, D. ; Ledoux, M. ; Maurey, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d605d335f7c616a7236c0da3a31ecef5e68a9b00e24281d91c395d3e97daa7b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematical Physics</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barthe, F.</creatorcontrib><creatorcontrib>Cordero-Erausquin, D.</creatorcontrib><creatorcontrib>Ledoux, M.</creatorcontrib><creatorcontrib>Maurey, B.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barthe, F.</au><au>Cordero-Erausquin, D.</au><au>Ledoux, M.</au><au>Maurey, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation and Brascamp-Lieb Inequalities for Markov Semigroups</atitle><jtitle>International mathematics research notices</jtitle><date>2011-01-01</date><risdate>2011</risdate><issue>10</issue><spage>2177</spage><epage>2216</epage><pages>2177-2216</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>This paper builds upon several recent works, where semigroup proofs of Brascamp-Lieb inequalities are provided in various settings (Euclidean space, spheres, and symmetric groups). Our aim is two-fold. Firstly, we provide a general, unifying, framework based on Markov generators, in order to cover a variety of examples of interest going beyond previous investigations. Secondly, we put forward the combinatorial reasons for which unexpected exponents occur in these inequalities. Related superadditivity of information and entropy inequalities are also studied.</abstract><pub>Oxford University Press (OUP)</pub><doi>10.1093/imrn/rnq114</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0003-0104-0816</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2011-01 (10), p.2177-2216 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00693000v1 |
source | Oxford Journals Online |
subjects | Mathematical Physics Mathematics |
title | Correlation and Brascamp-Lieb Inequalities for Markov Semigroups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20and%20Brascamp-Lieb%20Inequalities%20for%20Markov%20Semigroups&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Barthe,%20F.&rft.date=2011-01-01&rft.issue=10&rft.spage=2177&rft.epage=2216&rft.pages=2177-2216&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnq114&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00693000v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-d605d335f7c616a7236c0da3a31ecef5e68a9b00e24281d91c395d3e97daa7b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |