Loading…

Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies

► Crack propagation at interfaces of thermal barrier coatings system is simulated. ► It is realized by the contact tool Debond in the ABAQUS code. ► Cracking depends on interface morphology and on thickness of the TGO layer. ► Stress distribution is different between the case with and without crack....

Full description

Saved in:
Bibliographic Details
Published in:Materials & Design 2011-12, Vol.32 (10), p.4961-4969
Main Authors: Ranjbar-far, M., Absi, J., Mariaux, G., Smith, D.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-7e552189d2d7476a7edb999876b0bc151d45eeceea3a09aaa7f47bf5d97dea8c3
cites cdi_FETCH-LOGICAL-c437t-7e552189d2d7476a7edb999876b0bc151d45eeceea3a09aaa7f47bf5d97dea8c3
container_end_page 4969
container_issue 10
container_start_page 4961
container_title Materials & Design
container_volume 32
creator Ranjbar-far, M.
Absi, J.
Mariaux, G.
Smith, D.S.
description ► Crack propagation at interfaces of thermal barrier coatings system is simulated. ► It is realized by the contact tool Debond in the ABAQUS code. ► Cracking depends on interface morphology and on thickness of the TGO layer. ► Stress distribution is different between the case with and without crack. A finite element model (FEM) is developed to simulate the crack development in a typical plasma sprayed thermal barrier coatings system in consequence of the stresses induced by thermal cycling, the growth of the oxide layer and different interface morphologies. The thermo-mechanical model is designed to takes into account a non-homogenous temperature distribution and the effects of the residual stress generated during coating process. Crack propagation at the top-coat/oxide and oxide/bond-coat interfaces is simulated thanks to the contact tool “ Debond” present in the ABAQUS finite element code. Simulations are performed with a geometry corresponding to identical or dissimilar amplitude of asperity and for different thickness of oxide layer. The results show a significant difference between the case with and without presence of crack propagation and an important damage on the interfaces due to the growth of the oxide layer very close to the height of the interface asperities.
doi_str_mv 10.1016/j.matdes.2011.05.039
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00700322v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0261306911003906</els_id><sourcerecordid>1692411218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-7e552189d2d7476a7edb999876b0bc151d45eeceea3a09aaa7f47bf5d97dea8c3</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEEqXwBhx8Aw4JHueP4wtStQKKtBIXOFsTe7LrbRIvtlvYp-FV8RKoOJWTR6PfNx598xXFS-AVcOjeHqoZk6VYCQ5Q8bbitXpUXHDRNSUI2T7-XUNZ8049LZ7FeOAcJIC4KH5uApobdgz-iDtMzi9s9pYmt-xYrtOemFsShRENRebHcyfMOLEBQ3AUmPFZleF4iolm9t2lPbNuHCnQkjLtzM1C8a-U-R_OEpvwlKW42H_Q-2_yAuG495PfOYrPiycjTpFe_Hkvi68f3n_ZXJfbzx8_ba62pWlqmUpJbSugV1ZY2cgOJdlBKdXLbuCDgRZs0xIZIqyRK0SUYyOHsbVKWsLe1JfFm3XuHid9DG7GcNIenb6-2upzj3PJeS3EHWT21cpm177dUkx6dtHQNOFC_jZqJTrRt9n3_5OgFJd1JzP5-kESOiWafDHoM9qsqAk-xkDj_b7A9TkP-qDXPOhzHjRvdc5Dlr1bZZRtvMun09E4WgxZF8gkbb17eMAvGrnD0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692411218</pqid></control><display><type>article</type><title>Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Ranjbar-far, M. ; Absi, J. ; Mariaux, G. ; Smith, D.S.</creator><creatorcontrib>Ranjbar-far, M. ; Absi, J. ; Mariaux, G. ; Smith, D.S.</creatorcontrib><description>► Crack propagation at interfaces of thermal barrier coatings system is simulated. ► It is realized by the contact tool Debond in the ABAQUS code. ► Cracking depends on interface morphology and on thickness of the TGO layer. ► Stress distribution is different between the case with and without crack. A finite element model (FEM) is developed to simulate the crack development in a typical plasma sprayed thermal barrier coatings system in consequence of the stresses induced by thermal cycling, the growth of the oxide layer and different interface morphologies. The thermo-mechanical model is designed to takes into account a non-homogenous temperature distribution and the effects of the residual stress generated during coating process. Crack propagation at the top-coat/oxide and oxide/bond-coat interfaces is simulated thanks to the contact tool “ Debond” present in the ABAQUS finite element code. Simulations are performed with a geometry corresponding to identical or dissimilar amplitude of asperity and for different thickness of oxide layer. The results show a significant difference between the case with and without presence of crack propagation and an important damage on the interfaces due to the growth of the oxide layer very close to the height of the interface asperities.</description><identifier>ISSN: 0261-3069</identifier><identifier>EISSN: 0264-1275</identifier><identifier>DOI: 10.1016/j.matdes.2011.05.039</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Crack propagation ; Failure analysis ; Finite element method ; Fracture mechanics ; Mathematical analysis ; Mathematical models ; Morphology ; Oxidation ; Oxides ; Thermal</subject><ispartof>Materials &amp; Design, 2011-12, Vol.32 (10), p.4961-4969</ispartof><rights>2011 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-7e552189d2d7476a7edb999876b0bc151d45eeceea3a09aaa7f47bf5d97dea8c3</citedby><cites>FETCH-LOGICAL-c437t-7e552189d2d7476a7edb999876b0bc151d45eeceea3a09aaa7f47bf5d97dea8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00700322$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranjbar-far, M.</creatorcontrib><creatorcontrib>Absi, J.</creatorcontrib><creatorcontrib>Mariaux, G.</creatorcontrib><creatorcontrib>Smith, D.S.</creatorcontrib><title>Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies</title><title>Materials &amp; Design</title><description>► Crack propagation at interfaces of thermal barrier coatings system is simulated. ► It is realized by the contact tool Debond in the ABAQUS code. ► Cracking depends on interface morphology and on thickness of the TGO layer. ► Stress distribution is different between the case with and without crack. A finite element model (FEM) is developed to simulate the crack development in a typical plasma sprayed thermal barrier coatings system in consequence of the stresses induced by thermal cycling, the growth of the oxide layer and different interface morphologies. The thermo-mechanical model is designed to takes into account a non-homogenous temperature distribution and the effects of the residual stress generated during coating process. Crack propagation at the top-coat/oxide and oxide/bond-coat interfaces is simulated thanks to the contact tool “ Debond” present in the ABAQUS finite element code. Simulations are performed with a geometry corresponding to identical or dissimilar amplitude of asperity and for different thickness of oxide layer. The results show a significant difference between the case with and without presence of crack propagation and an important damage on the interfaces due to the growth of the oxide layer very close to the height of the interface asperities.</description><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Failure analysis</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Thermal</subject><issn>0261-3069</issn><issn>0264-1275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFks9u1DAQxiMEEqXwBhx8Aw4JHueP4wtStQKKtBIXOFsTe7LrbRIvtlvYp-FV8RKoOJWTR6PfNx598xXFS-AVcOjeHqoZk6VYCQ5Q8bbitXpUXHDRNSUI2T7-XUNZ8049LZ7FeOAcJIC4KH5uApobdgz-iDtMzi9s9pYmt-xYrtOemFsShRENRebHcyfMOLEBQ3AUmPFZleF4iolm9t2lPbNuHCnQkjLtzM1C8a-U-R_OEpvwlKW42H_Q-2_yAuG495PfOYrPiycjTpFe_Hkvi68f3n_ZXJfbzx8_ba62pWlqmUpJbSugV1ZY2cgOJdlBKdXLbuCDgRZs0xIZIqyRK0SUYyOHsbVKWsLe1JfFm3XuHid9DG7GcNIenb6-2upzj3PJeS3EHWT21cpm177dUkx6dtHQNOFC_jZqJTrRt9n3_5OgFJd1JzP5-kESOiWafDHoM9qsqAk-xkDj_b7A9TkP-qDXPOhzHjRvdc5Dlr1bZZRtvMun09E4WgxZF8gkbb17eMAvGrnD0Q</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Ranjbar-far, M.</creator><creator>Absi, J.</creator><creator>Mariaux, G.</creator><creator>Smith, D.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope></search><sort><creationdate>20111201</creationdate><title>Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies</title><author>Ranjbar-far, M. ; Absi, J. ; Mariaux, G. ; Smith, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-7e552189d2d7476a7edb999876b0bc151d45eeceea3a09aaa7f47bf5d97dea8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Failure analysis</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Thermal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjbar-far, M.</creatorcontrib><creatorcontrib>Absi, J.</creatorcontrib><creatorcontrib>Mariaux, G.</creatorcontrib><creatorcontrib>Smith, D.S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials &amp; Design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjbar-far, M.</au><au>Absi, J.</au><au>Mariaux, G.</au><au>Smith, D.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies</atitle><jtitle>Materials &amp; Design</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>32</volume><issue>10</issue><spage>4961</spage><epage>4969</epage><pages>4961-4969</pages><issn>0261-3069</issn><eissn>0264-1275</eissn><abstract>► Crack propagation at interfaces of thermal barrier coatings system is simulated. ► It is realized by the contact tool Debond in the ABAQUS code. ► Cracking depends on interface morphology and on thickness of the TGO layer. ► Stress distribution is different between the case with and without crack. A finite element model (FEM) is developed to simulate the crack development in a typical plasma sprayed thermal barrier coatings system in consequence of the stresses induced by thermal cycling, the growth of the oxide layer and different interface morphologies. The thermo-mechanical model is designed to takes into account a non-homogenous temperature distribution and the effects of the residual stress generated during coating process. Crack propagation at the top-coat/oxide and oxide/bond-coat interfaces is simulated thanks to the contact tool “ Debond” present in the ABAQUS finite element code. Simulations are performed with a geometry corresponding to identical or dissimilar amplitude of asperity and for different thickness of oxide layer. The results show a significant difference between the case with and without presence of crack propagation and an important damage on the interfaces due to the growth of the oxide layer very close to the height of the interface asperities.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.matdes.2011.05.039</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0261-3069
ispartof Materials & Design, 2011-12, Vol.32 (10), p.4961-4969
issn 0261-3069
0264-1275
language eng
recordid cdi_hal_primary_oai_HAL_hal_00700322v1
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Computer simulation
Crack propagation
Failure analysis
Finite element method
Fracture mechanics
Mathematical analysis
Mathematical models
Morphology
Oxidation
Oxides
Thermal
title Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack%20propagation%20modeling%20on%20the%20interfaces%20of%20thermal%20barrier%20coating%20system%20with%20different%20thickness%20of%20the%20oxide%20layer%20and%20different%20interface%20morphologies&rft.jtitle=Materials%20&%20Design&rft.au=Ranjbar-far,%20M.&rft.date=2011-12-01&rft.volume=32&rft.issue=10&rft.spage=4961&rft.epage=4969&rft.pages=4961-4969&rft.issn=0261-3069&rft.eissn=0264-1275&rft_id=info:doi/10.1016/j.matdes.2011.05.039&rft_dat=%3Cproquest_hal_p%3E1692411218%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-7e552189d2d7476a7edb999876b0bc151d45eeceea3a09aaa7f47bf5d97dea8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1692411218&rft_id=info:pmid/&rfr_iscdi=true