Loading…

Active spike transmission in the neuron model with a winding threshold manifold

We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2012-04, Vol.83, p.205-211
Main Authors: Kazantsev, V.B., Tchakoutio Nguetcho, A.S., Jacquir, S., Binczak, S., Bilbault, J.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3
cites cdi_FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3
container_end_page 211
container_issue
container_start_page 205
container_title Neurocomputing (Amsterdam)
container_volume 83
creator Kazantsev, V.B.
Tchakoutio Nguetcho, A.S.
Jacquir, S.
Binczak, S.
Bilbault, J.M.
description We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we show that for certain parameter range there is a possibility to trigger a spiking sequence with a finite number of spikes (a spiking message) in the response on a short stimulus pulse. So active transformation of N incoming pulses to M (with M>N) outgoing spikes is possible. At the level of single neuron computations such property can provide an active “spike source” compensating “spike dissipation” due to the integrate-and-fire N to 1 response. We delineate the dynamical mechanism for the N to M transformation based on the winding threshold manifold in the neighborhood of big saddle loop bifurcation. Based on the theoretical predictions, a nonlinear electronic circuit is designed implementing the active transmission in physical conditions.
doi_str_mv 10.1016/j.neucom.2011.12.014
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00711090v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231211007326</els_id><sourcerecordid>1323805525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3</originalsourceid><addsrcrecordid>eNp9UD1v2zAUJIoUqJP2H3TQ2AxS3iOlUFoCGEHSFDCQJZ0Jmnys6UqkQ8oO-u9LQ0XGTvc-7g64Y-wrQoOAtzf7JtDRxKnhgNggbwDbD2yFveR1z_vbC7aCgXc1F8g_scuc9wAokQ8r9rw2sz9RlQ_-N1Vz0iFPPmcfQ-VDNe-oKtapbFO0NFZvft5VukCwPvwq_0R5F0dbTTp4V4bP7KPTY6Yv__CK_Xx8eLl_qjfP33_crze1EVLM9ba1Whjcgh4EODFI3IpeulbgVjpCMFyA1doOQneuc20rOyoJWi2s4Fw6ccWuF9-dHtUh-UmnPypqr57WG3W-AUhEGOCEhftt4R5SfD1SnlWJaGgcdaB4zAoFFz10He8KtV2oJsWcE7l3bwR17lrt1dK1OnetkKvSdZHdLTIqkU-eksrGUzBkfSIzKxv9_w3-ApioiRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323805525</pqid></control><display><type>article</type><title>Active spike transmission in the neuron model with a winding threshold manifold</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kazantsev, V.B. ; Tchakoutio Nguetcho, A.S. ; Jacquir, S. ; Binczak, S. ; Bilbault, J.M.</creator><creatorcontrib>Kazantsev, V.B. ; Tchakoutio Nguetcho, A.S. ; Jacquir, S. ; Binczak, S. ; Bilbault, J.M.</creatorcontrib><description>We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we show that for certain parameter range there is a possibility to trigger a spiking sequence with a finite number of spikes (a spiking message) in the response on a short stimulus pulse. So active transformation of N incoming pulses to M (with M&gt;N) outgoing spikes is possible. At the level of single neuron computations such property can provide an active “spike source” compensating “spike dissipation” due to the integrate-and-fire N to 1 response. We delineate the dynamical mechanism for the N to M transformation based on the winding threshold manifold in the neighborhood of big saddle loop bifurcation. Based on the theoretical predictions, a nonlinear electronic circuit is designed implementing the active transmission in physical conditions.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2011.12.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Active response ; Chaotic Dynamics ; Cognitive science ; Dynamical Systems ; Electronics ; Engineering Sciences ; Excitability ; Mathematics ; Neuroscience ; Nonlinear dynamics ; Nonlinear Sciences ; Spike encoding ; Spike transmission ; Threshold manifold</subject><ispartof>Neurocomputing (Amsterdam), 2012-04, Vol.83, p.205-211</ispartof><rights>2012 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3</citedby><cites>FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3</cites><orcidid>0000-0002-6296-7888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://u-bourgogne.hal.science/hal-00711090$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kazantsev, V.B.</creatorcontrib><creatorcontrib>Tchakoutio Nguetcho, A.S.</creatorcontrib><creatorcontrib>Jacquir, S.</creatorcontrib><creatorcontrib>Binczak, S.</creatorcontrib><creatorcontrib>Bilbault, J.M.</creatorcontrib><title>Active spike transmission in the neuron model with a winding threshold manifold</title><title>Neurocomputing (Amsterdam)</title><description>We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we show that for certain parameter range there is a possibility to trigger a spiking sequence with a finite number of spikes (a spiking message) in the response on a short stimulus pulse. So active transformation of N incoming pulses to M (with M&gt;N) outgoing spikes is possible. At the level of single neuron computations such property can provide an active “spike source” compensating “spike dissipation” due to the integrate-and-fire N to 1 response. We delineate the dynamical mechanism for the N to M transformation based on the winding threshold manifold in the neighborhood of big saddle loop bifurcation. Based on the theoretical predictions, a nonlinear electronic circuit is designed implementing the active transmission in physical conditions.</description><subject>Active response</subject><subject>Chaotic Dynamics</subject><subject>Cognitive science</subject><subject>Dynamical Systems</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Excitability</subject><subject>Mathematics</subject><subject>Neuroscience</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear Sciences</subject><subject>Spike encoding</subject><subject>Spike transmission</subject><subject>Threshold manifold</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UD1v2zAUJIoUqJP2H3TQ2AxS3iOlUFoCGEHSFDCQJZ0Jmnys6UqkQ8oO-u9LQ0XGTvc-7g64Y-wrQoOAtzf7JtDRxKnhgNggbwDbD2yFveR1z_vbC7aCgXc1F8g_scuc9wAokQ8r9rw2sz9RlQ_-N1Vz0iFPPmcfQ-VDNe-oKtapbFO0NFZvft5VukCwPvwq_0R5F0dbTTp4V4bP7KPTY6Yv__CK_Xx8eLl_qjfP33_crze1EVLM9ba1Whjcgh4EODFI3IpeulbgVjpCMFyA1doOQneuc20rOyoJWi2s4Fw6ccWuF9-dHtUh-UmnPypqr57WG3W-AUhEGOCEhftt4R5SfD1SnlWJaGgcdaB4zAoFFz10He8KtV2oJsWcE7l3bwR17lrt1dK1OnetkKvSdZHdLTIqkU-eksrGUzBkfSIzKxv9_w3-ApioiRA</recordid><startdate>20120415</startdate><enddate>20120415</enddate><creator>Kazantsev, V.B.</creator><creator>Tchakoutio Nguetcho, A.S.</creator><creator>Jacquir, S.</creator><creator>Binczak, S.</creator><creator>Bilbault, J.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6296-7888</orcidid></search><sort><creationdate>20120415</creationdate><title>Active spike transmission in the neuron model with a winding threshold manifold</title><author>Kazantsev, V.B. ; Tchakoutio Nguetcho, A.S. ; Jacquir, S. ; Binczak, S. ; Bilbault, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active response</topic><topic>Chaotic Dynamics</topic><topic>Cognitive science</topic><topic>Dynamical Systems</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Excitability</topic><topic>Mathematics</topic><topic>Neuroscience</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear Sciences</topic><topic>Spike encoding</topic><topic>Spike transmission</topic><topic>Threshold manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazantsev, V.B.</creatorcontrib><creatorcontrib>Tchakoutio Nguetcho, A.S.</creatorcontrib><creatorcontrib>Jacquir, S.</creatorcontrib><creatorcontrib>Binczak, S.</creatorcontrib><creatorcontrib>Bilbault, J.M.</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazantsev, V.B.</au><au>Tchakoutio Nguetcho, A.S.</au><au>Jacquir, S.</au><au>Binczak, S.</au><au>Bilbault, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active spike transmission in the neuron model with a winding threshold manifold</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2012-04-15</date><risdate>2012</risdate><volume>83</volume><spage>205</spage><epage>211</epage><pages>205-211</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we show that for certain parameter range there is a possibility to trigger a spiking sequence with a finite number of spikes (a spiking message) in the response on a short stimulus pulse. So active transformation of N incoming pulses to M (with M&gt;N) outgoing spikes is possible. At the level of single neuron computations such property can provide an active “spike source” compensating “spike dissipation” due to the integrate-and-fire N to 1 response. We delineate the dynamical mechanism for the N to M transformation based on the winding threshold manifold in the neighborhood of big saddle loop bifurcation. Based on the theoretical predictions, a nonlinear electronic circuit is designed implementing the active transmission in physical conditions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2011.12.014</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6296-7888</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2012-04, Vol.83, p.205-211
issn 0925-2312
1872-8286
language eng
recordid cdi_hal_primary_oai_HAL_hal_00711090v1
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Active response
Chaotic Dynamics
Cognitive science
Dynamical Systems
Electronics
Engineering Sciences
Excitability
Mathematics
Neuroscience
Nonlinear dynamics
Nonlinear Sciences
Spike encoding
Spike transmission
Threshold manifold
title Active spike transmission in the neuron model with a winding threshold manifold
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20spike%20transmission%20in%20the%20neuron%20model%20with%20a%20winding%20threshold%20manifold&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Kazantsev,%20V.B.&rft.date=2012-04-15&rft.volume=83&rft.spage=205&rft.epage=211&rft.pages=205-211&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2011.12.014&rft_dat=%3Cproquest_hal_p%3E1323805525%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323805525&rft_id=info:pmid/&rfr_iscdi=true