Loading…
Active spike transmission in the neuron model with a winding threshold manifold
We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we...
Saved in:
Published in: | Neurocomputing (Amsterdam) 2012-04, Vol.83, p.205-211 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3 |
container_end_page | 211 |
container_issue | |
container_start_page | 205 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 83 |
creator | Kazantsev, V.B. Tchakoutio Nguetcho, A.S. Jacquir, S. Binczak, S. Bilbault, J.M. |
description | We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we show that for certain parameter range there is a possibility to trigger a spiking sequence with a finite number of spikes (a spiking message) in the response on a short stimulus pulse. So active transformation of N incoming pulses to M (with M>N) outgoing spikes is possible. At the level of single neuron computations such property can provide an active “spike source” compensating “spike dissipation” due to the integrate-and-fire N to 1 response. We delineate the dynamical mechanism for the N to M transformation based on the winding threshold manifold in the neighborhood of big saddle loop bifurcation. Based on the theoretical predictions, a nonlinear electronic circuit is designed implementing the active transmission in physical conditions. |
doi_str_mv | 10.1016/j.neucom.2011.12.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00711090v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231211007326</els_id><sourcerecordid>1323805525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3</originalsourceid><addsrcrecordid>eNp9UD1v2zAUJIoUqJP2H3TQ2AxS3iOlUFoCGEHSFDCQJZ0Jmnys6UqkQ8oO-u9LQ0XGTvc-7g64Y-wrQoOAtzf7JtDRxKnhgNggbwDbD2yFveR1z_vbC7aCgXc1F8g_scuc9wAokQ8r9rw2sz9RlQ_-N1Vz0iFPPmcfQ-VDNe-oKtapbFO0NFZvft5VukCwPvwq_0R5F0dbTTp4V4bP7KPTY6Yv__CK_Xx8eLl_qjfP33_crze1EVLM9ba1Whjcgh4EODFI3IpeulbgVjpCMFyA1doOQneuc20rOyoJWi2s4Fw6ccWuF9-dHtUh-UmnPypqr57WG3W-AUhEGOCEhftt4R5SfD1SnlWJaGgcdaB4zAoFFz10He8KtV2oJsWcE7l3bwR17lrt1dK1OnetkKvSdZHdLTIqkU-eksrGUzBkfSIzKxv9_w3-ApioiRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323805525</pqid></control><display><type>article</type><title>Active spike transmission in the neuron model with a winding threshold manifold</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kazantsev, V.B. ; Tchakoutio Nguetcho, A.S. ; Jacquir, S. ; Binczak, S. ; Bilbault, J.M.</creator><creatorcontrib>Kazantsev, V.B. ; Tchakoutio Nguetcho, A.S. ; Jacquir, S. ; Binczak, S. ; Bilbault, J.M.</creatorcontrib><description>We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we show that for certain parameter range there is a possibility to trigger a spiking sequence with a finite number of spikes (a spiking message) in the response on a short stimulus pulse. So active transformation of N incoming pulses to M (with M>N) outgoing spikes is possible. At the level of single neuron computations such property can provide an active “spike source” compensating “spike dissipation” due to the integrate-and-fire N to 1 response. We delineate the dynamical mechanism for the N to M transformation based on the winding threshold manifold in the neighborhood of big saddle loop bifurcation. Based on the theoretical predictions, a nonlinear electronic circuit is designed implementing the active transmission in physical conditions.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2011.12.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Active response ; Chaotic Dynamics ; Cognitive science ; Dynamical Systems ; Electronics ; Engineering Sciences ; Excitability ; Mathematics ; Neuroscience ; Nonlinear dynamics ; Nonlinear Sciences ; Spike encoding ; Spike transmission ; Threshold manifold</subject><ispartof>Neurocomputing (Amsterdam), 2012-04, Vol.83, p.205-211</ispartof><rights>2012 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3</citedby><cites>FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3</cites><orcidid>0000-0002-6296-7888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://u-bourgogne.hal.science/hal-00711090$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kazantsev, V.B.</creatorcontrib><creatorcontrib>Tchakoutio Nguetcho, A.S.</creatorcontrib><creatorcontrib>Jacquir, S.</creatorcontrib><creatorcontrib>Binczak, S.</creatorcontrib><creatorcontrib>Bilbault, J.M.</creatorcontrib><title>Active spike transmission in the neuron model with a winding threshold manifold</title><title>Neurocomputing (Amsterdam)</title><description>We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we show that for certain parameter range there is a possibility to trigger a spiking sequence with a finite number of spikes (a spiking message) in the response on a short stimulus pulse. So active transformation of N incoming pulses to M (with M>N) outgoing spikes is possible. At the level of single neuron computations such property can provide an active “spike source” compensating “spike dissipation” due to the integrate-and-fire N to 1 response. We delineate the dynamical mechanism for the N to M transformation based on the winding threshold manifold in the neighborhood of big saddle loop bifurcation. Based on the theoretical predictions, a nonlinear electronic circuit is designed implementing the active transmission in physical conditions.</description><subject>Active response</subject><subject>Chaotic Dynamics</subject><subject>Cognitive science</subject><subject>Dynamical Systems</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Excitability</subject><subject>Mathematics</subject><subject>Neuroscience</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear Sciences</subject><subject>Spike encoding</subject><subject>Spike transmission</subject><subject>Threshold manifold</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UD1v2zAUJIoUqJP2H3TQ2AxS3iOlUFoCGEHSFDCQJZ0Jmnys6UqkQ8oO-u9LQ0XGTvc-7g64Y-wrQoOAtzf7JtDRxKnhgNggbwDbD2yFveR1z_vbC7aCgXc1F8g_scuc9wAokQ8r9rw2sz9RlQ_-N1Vz0iFPPmcfQ-VDNe-oKtapbFO0NFZvft5VukCwPvwq_0R5F0dbTTp4V4bP7KPTY6Yv__CK_Xx8eLl_qjfP33_crze1EVLM9ba1Whjcgh4EODFI3IpeulbgVjpCMFyA1doOQneuc20rOyoJWi2s4Fw6ccWuF9-dHtUh-UmnPypqr57WG3W-AUhEGOCEhftt4R5SfD1SnlWJaGgcdaB4zAoFFz10He8KtV2oJsWcE7l3bwR17lrt1dK1OnetkKvSdZHdLTIqkU-eksrGUzBkfSIzKxv9_w3-ApioiRA</recordid><startdate>20120415</startdate><enddate>20120415</enddate><creator>Kazantsev, V.B.</creator><creator>Tchakoutio Nguetcho, A.S.</creator><creator>Jacquir, S.</creator><creator>Binczak, S.</creator><creator>Bilbault, J.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6296-7888</orcidid></search><sort><creationdate>20120415</creationdate><title>Active spike transmission in the neuron model with a winding threshold manifold</title><author>Kazantsev, V.B. ; Tchakoutio Nguetcho, A.S. ; Jacquir, S. ; Binczak, S. ; Bilbault, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active response</topic><topic>Chaotic Dynamics</topic><topic>Cognitive science</topic><topic>Dynamical Systems</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Excitability</topic><topic>Mathematics</topic><topic>Neuroscience</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear Sciences</topic><topic>Spike encoding</topic><topic>Spike transmission</topic><topic>Threshold manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazantsev, V.B.</creatorcontrib><creatorcontrib>Tchakoutio Nguetcho, A.S.</creatorcontrib><creatorcontrib>Jacquir, S.</creatorcontrib><creatorcontrib>Binczak, S.</creatorcontrib><creatorcontrib>Bilbault, J.M.</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazantsev, V.B.</au><au>Tchakoutio Nguetcho, A.S.</au><au>Jacquir, S.</au><au>Binczak, S.</au><au>Bilbault, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active spike transmission in the neuron model with a winding threshold manifold</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2012-04-15</date><risdate>2012</risdate><volume>83</volume><spage>205</spage><epage>211</epage><pages>205-211</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we show that for certain parameter range there is a possibility to trigger a spiking sequence with a finite number of spikes (a spiking message) in the response on a short stimulus pulse. So active transformation of N incoming pulses to M (with M>N) outgoing spikes is possible. At the level of single neuron computations such property can provide an active “spike source” compensating “spike dissipation” due to the integrate-and-fire N to 1 response. We delineate the dynamical mechanism for the N to M transformation based on the winding threshold manifold in the neighborhood of big saddle loop bifurcation. Based on the theoretical predictions, a nonlinear electronic circuit is designed implementing the active transmission in physical conditions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2011.12.014</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6296-7888</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2012-04, Vol.83, p.205-211 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00711090v1 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Active response Chaotic Dynamics Cognitive science Dynamical Systems Electronics Engineering Sciences Excitability Mathematics Neuroscience Nonlinear dynamics Nonlinear Sciences Spike encoding Spike transmission Threshold manifold |
title | Active spike transmission in the neuron model with a winding threshold manifold |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20spike%20transmission%20in%20the%20neuron%20model%20with%20a%20winding%20threshold%20manifold&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Kazantsev,%20V.B.&rft.date=2012-04-15&rft.volume=83&rft.spage=205&rft.epage=211&rft.pages=205-211&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2011.12.014&rft_dat=%3Cproquest_hal_p%3E1323805525%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-b4da3c1b0a930f3971b387f431b7fe10c230daad93a5f5f4475e9254a3d3227f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323805525&rft_id=info:pmid/&rfr_iscdi=true |