Loading…

Stability analysis of discrete-time Lur’e systems

A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector conditio...

Full description

Saved in:
Bibliographic Details
Published in:Automatica (Oxford) 2012-09, Vol.48 (9), p.2277-2283
Main Authors: C. Gonzaga, Carlos A., Jungers, Marc, Daafouz, Jamal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143
cites cdi_FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143
container_end_page 2283
container_issue 9
container_start_page 2277
container_title Automatica (Oxford)
container_volume 48
creator C. Gonzaga, Carlos A.
Jungers, Marc
Daafouz, Jamal
description A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector condition into account. Unlike frameworks based on the Lur’e-type function, the additional assumptions about the derivative or discrete variation of the nonlinearity are not necessary. Hence, a wider range of cone bounded nonlinearities can be covered. We also show that there is a link between global stability LMI conditions based on this new Lyapunov function and a transfer function of an auxiliary system being strictly positive real. In addition, the novel function is considered in the local stability analysis problem of discrete-time Lur’e systems subject to a saturating feedback. A convex optimization problem based on sufficient LMI conditions is formulated to maximize an estimate of the basin of attraction. Another specificity of this new Lyapunov function is the fact that the estimate is composed of disconnected sets. Numerical examples reveal the effectiveness of this new Lyapunov function in providing a less conservative estimate with respect to the quadratic function.
doi_str_mv 10.1016/j.automatica.2012.06.034
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00717576v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109812002890</els_id><sourcerecordid>1082223350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143</originalsourceid><addsrcrecordid>eNqFkM1KxDAQx4MouH68Qy-CHlpnkjZtjyp-wYIH9Rym6RSztFtNssLefA1fzyexy4oePQ0z_P4zzE-IBCFDQH2-yGgVx4Gis5RJQJmBzkDlO2KGValSWSm9K2YAUKQIdbUvDkJYTG2OlZwJ9Ripcb2L64SW1K-DC8nYJa0L1nPkNLqBk_nKf318chLWIfIQjsReR33g4596KJ5vrp-u7tL5w-391cU8tbkuYiqx6SCvmcrKooYa2TasyqKpS7KdypG1rVtJkrSyGnXZUQuyapls01rM1aE42-59od68ejeQX5uRnLm7mJvNDKDEsij1O07s6ZZ99ePbikM0w_QC9z0teVwFg1BJKZUqYEKrLWr9GILn7nc3gtk4NQvz59RsnBrQZnI6RU9-rlCw1HeeltaF37zUUhdKyYm73HI86Xl37E2wjpeWW-fZRtOO7v9j31Oskh0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082223350</pqid></control><display><type>article</type><title>Stability analysis of discrete-time Lur’e systems</title><source>Elsevier</source><creator>C. Gonzaga, Carlos A. ; Jungers, Marc ; Daafouz, Jamal</creator><creatorcontrib>C. Gonzaga, Carlos A. ; Jungers, Marc ; Daafouz, Jamal</creatorcontrib><description>A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector condition into account. Unlike frameworks based on the Lur’e-type function, the additional assumptions about the derivative or discrete variation of the nonlinearity are not necessary. Hence, a wider range of cone bounded nonlinearities can be covered. We also show that there is a link between global stability LMI conditions based on this new Lyapunov function and a transfer function of an auxiliary system being strictly positive real. In addition, the novel function is considered in the local stability analysis problem of discrete-time Lur’e systems subject to a saturating feedback. A convex optimization problem based on sufficient LMI conditions is formulated to maximize an estimate of the basin of attraction. Another specificity of this new Lyapunov function is the fact that the estimate is composed of disconnected sets. Numerical examples reveal the effectiveness of this new Lyapunov function in providing a less conservative estimate with respect to the quadratic function.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2012.06.034</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Absolute stability ; Applied sciences ; Automatic ; Automation ; Basin of attraction estimate ; Bounded sector nonlinearity ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Derivatives ; Engineering Sciences ; Estimates ; Exact sciences and technology ; Lur’e systems ; Lyapunov function ; Lyapunov functions ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Saturation ; Stability analysis ; System theory</subject><ispartof>Automatica (Oxford), 2012-09, Vol.48 (9), p.2277-2283</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143</citedby><cites>FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143</cites><orcidid>0000-0001-8313-8790 ; 0000-0002-6670-3249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26265332$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00717576$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>C. Gonzaga, Carlos A.</creatorcontrib><creatorcontrib>Jungers, Marc</creatorcontrib><creatorcontrib>Daafouz, Jamal</creatorcontrib><title>Stability analysis of discrete-time Lur’e systems</title><title>Automatica (Oxford)</title><description>A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector condition into account. Unlike frameworks based on the Lur’e-type function, the additional assumptions about the derivative or discrete variation of the nonlinearity are not necessary. Hence, a wider range of cone bounded nonlinearities can be covered. We also show that there is a link between global stability LMI conditions based on this new Lyapunov function and a transfer function of an auxiliary system being strictly positive real. In addition, the novel function is considered in the local stability analysis problem of discrete-time Lur’e systems subject to a saturating feedback. A convex optimization problem based on sufficient LMI conditions is formulated to maximize an estimate of the basin of attraction. Another specificity of this new Lyapunov function is the fact that the estimate is composed of disconnected sets. Numerical examples reveal the effectiveness of this new Lyapunov function in providing a less conservative estimate with respect to the quadratic function.</description><subject>Absolute stability</subject><subject>Applied sciences</subject><subject>Automatic</subject><subject>Automation</subject><subject>Basin of attraction estimate</subject><subject>Bounded sector nonlinearity</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Derivatives</subject><subject>Engineering Sciences</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Lur’e systems</subject><subject>Lyapunov function</subject><subject>Lyapunov functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Saturation</subject><subject>Stability analysis</subject><subject>System theory</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAQx4MouH68Qy-CHlpnkjZtjyp-wYIH9Rym6RSztFtNssLefA1fzyexy4oePQ0z_P4zzE-IBCFDQH2-yGgVx4Gis5RJQJmBzkDlO2KGValSWSm9K2YAUKQIdbUvDkJYTG2OlZwJ9Ripcb2L64SW1K-DC8nYJa0L1nPkNLqBk_nKf318chLWIfIQjsReR33g4596KJ5vrp-u7tL5w-391cU8tbkuYiqx6SCvmcrKooYa2TasyqKpS7KdypG1rVtJkrSyGnXZUQuyapls01rM1aE42-59od68ejeQX5uRnLm7mJvNDKDEsij1O07s6ZZ99ePbikM0w_QC9z0teVwFg1BJKZUqYEKrLWr9GILn7nc3gtk4NQvz59RsnBrQZnI6RU9-rlCw1HeeltaF37zUUhdKyYm73HI86Xl37E2wjpeWW-fZRtOO7v9j31Oskh0</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>C. Gonzaga, Carlos A.</creator><creator>Jungers, Marc</creator><creator>Daafouz, Jamal</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8313-8790</orcidid><orcidid>https://orcid.org/0000-0002-6670-3249</orcidid></search><sort><creationdate>20120901</creationdate><title>Stability analysis of discrete-time Lur’e systems</title><author>C. Gonzaga, Carlos A. ; Jungers, Marc ; Daafouz, Jamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Absolute stability</topic><topic>Applied sciences</topic><topic>Automatic</topic><topic>Automation</topic><topic>Basin of attraction estimate</topic><topic>Bounded sector nonlinearity</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Derivatives</topic><topic>Engineering Sciences</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Lur’e systems</topic><topic>Lyapunov function</topic><topic>Lyapunov functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Saturation</topic><topic>Stability analysis</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>C. Gonzaga, Carlos A.</creatorcontrib><creatorcontrib>Jungers, Marc</creatorcontrib><creatorcontrib>Daafouz, Jamal</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>C. Gonzaga, Carlos A.</au><au>Jungers, Marc</au><au>Daafouz, Jamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of discrete-time Lur’e systems</atitle><jtitle>Automatica (Oxford)</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>48</volume><issue>9</issue><spage>2277</spage><epage>2283</epage><pages>2277-2283</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector condition into account. Unlike frameworks based on the Lur’e-type function, the additional assumptions about the derivative or discrete variation of the nonlinearity are not necessary. Hence, a wider range of cone bounded nonlinearities can be covered. We also show that there is a link between global stability LMI conditions based on this new Lyapunov function and a transfer function of an auxiliary system being strictly positive real. In addition, the novel function is considered in the local stability analysis problem of discrete-time Lur’e systems subject to a saturating feedback. A convex optimization problem based on sufficient LMI conditions is formulated to maximize an estimate of the basin of attraction. Another specificity of this new Lyapunov function is the fact that the estimate is composed of disconnected sets. Numerical examples reveal the effectiveness of this new Lyapunov function in providing a less conservative estimate with respect to the quadratic function.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2012.06.034</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8313-8790</orcidid><orcidid>https://orcid.org/0000-0002-6670-3249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2012-09, Vol.48 (9), p.2277-2283
issn 0005-1098
1873-2836
language eng
recordid cdi_hal_primary_oai_HAL_hal_00717576v1
source Elsevier
subjects Absolute stability
Applied sciences
Automatic
Automation
Basin of attraction estimate
Bounded sector nonlinearity
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Derivatives
Engineering Sciences
Estimates
Exact sciences and technology
Lur’e systems
Lyapunov function
Lyapunov functions
Mathematical analysis
Mathematical models
Nonlinearity
Saturation
Stability analysis
System theory
title Stability analysis of discrete-time Lur’e systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20discrete-time%20Lur%E2%80%99e%20systems&rft.jtitle=Automatica%20(Oxford)&rft.au=C.%20Gonzaga,%20Carlos%20A.&rft.date=2012-09-01&rft.volume=48&rft.issue=9&rft.spage=2277&rft.epage=2283&rft.pages=2277-2283&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2012.06.034&rft_dat=%3Cproquest_hal_p%3E1082223350%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082223350&rft_id=info:pmid/&rfr_iscdi=true