Loading…
Stability analysis of discrete-time Lur’e systems
A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector conditio...
Saved in:
Published in: | Automatica (Oxford) 2012-09, Vol.48 (9), p.2277-2283 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143 |
container_end_page | 2283 |
container_issue | 9 |
container_start_page | 2277 |
container_title | Automatica (Oxford) |
container_volume | 48 |
creator | C. Gonzaga, Carlos A. Jungers, Marc Daafouz, Jamal |
description | A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector condition into account. Unlike frameworks based on the Lur’e-type function, the additional assumptions about the derivative or discrete variation of the nonlinearity are not necessary. Hence, a wider range of cone bounded nonlinearities can be covered. We also show that there is a link between global stability LMI conditions based on this new Lyapunov function and a transfer function of an auxiliary system being strictly positive real. In addition, the novel function is considered in the local stability analysis problem of discrete-time Lur’e systems subject to a saturating feedback. A convex optimization problem based on sufficient LMI conditions is formulated to maximize an estimate of the basin of attraction. Another specificity of this new Lyapunov function is the fact that the estimate is composed of disconnected sets. Numerical examples reveal the effectiveness of this new Lyapunov function in providing a less conservative estimate with respect to the quadratic function. |
doi_str_mv | 10.1016/j.automatica.2012.06.034 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00717576v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109812002890</els_id><sourcerecordid>1082223350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143</originalsourceid><addsrcrecordid>eNqFkM1KxDAQx4MouH68Qy-CHlpnkjZtjyp-wYIH9Rym6RSztFtNssLefA1fzyexy4oePQ0z_P4zzE-IBCFDQH2-yGgVx4Gis5RJQJmBzkDlO2KGValSWSm9K2YAUKQIdbUvDkJYTG2OlZwJ9Ripcb2L64SW1K-DC8nYJa0L1nPkNLqBk_nKf318chLWIfIQjsReR33g4596KJ5vrp-u7tL5w-391cU8tbkuYiqx6SCvmcrKooYa2TasyqKpS7KdypG1rVtJkrSyGnXZUQuyapls01rM1aE42-59od68ejeQX5uRnLm7mJvNDKDEsij1O07s6ZZ99ePbikM0w_QC9z0teVwFg1BJKZUqYEKrLWr9GILn7nc3gtk4NQvz59RsnBrQZnI6RU9-rlCw1HeeltaF37zUUhdKyYm73HI86Xl37E2wjpeWW-fZRtOO7v9j31Oskh0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082223350</pqid></control><display><type>article</type><title>Stability analysis of discrete-time Lur’e systems</title><source>Elsevier</source><creator>C. Gonzaga, Carlos A. ; Jungers, Marc ; Daafouz, Jamal</creator><creatorcontrib>C. Gonzaga, Carlos A. ; Jungers, Marc ; Daafouz, Jamal</creatorcontrib><description>A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector condition into account. Unlike frameworks based on the Lur’e-type function, the additional assumptions about the derivative or discrete variation of the nonlinearity are not necessary. Hence, a wider range of cone bounded nonlinearities can be covered. We also show that there is a link between global stability LMI conditions based on this new Lyapunov function and a transfer function of an auxiliary system being strictly positive real. In addition, the novel function is considered in the local stability analysis problem of discrete-time Lur’e systems subject to a saturating feedback. A convex optimization problem based on sufficient LMI conditions is formulated to maximize an estimate of the basin of attraction. Another specificity of this new Lyapunov function is the fact that the estimate is composed of disconnected sets. Numerical examples reveal the effectiveness of this new Lyapunov function in providing a less conservative estimate with respect to the quadratic function.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2012.06.034</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Absolute stability ; Applied sciences ; Automatic ; Automation ; Basin of attraction estimate ; Bounded sector nonlinearity ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Derivatives ; Engineering Sciences ; Estimates ; Exact sciences and technology ; Lur’e systems ; Lyapunov function ; Lyapunov functions ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Saturation ; Stability analysis ; System theory</subject><ispartof>Automatica (Oxford), 2012-09, Vol.48 (9), p.2277-2283</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143</citedby><cites>FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143</cites><orcidid>0000-0001-8313-8790 ; 0000-0002-6670-3249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26265332$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00717576$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>C. Gonzaga, Carlos A.</creatorcontrib><creatorcontrib>Jungers, Marc</creatorcontrib><creatorcontrib>Daafouz, Jamal</creatorcontrib><title>Stability analysis of discrete-time Lur’e systems</title><title>Automatica (Oxford)</title><description>A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector condition into account. Unlike frameworks based on the Lur’e-type function, the additional assumptions about the derivative or discrete variation of the nonlinearity are not necessary. Hence, a wider range of cone bounded nonlinearities can be covered. We also show that there is a link between global stability LMI conditions based on this new Lyapunov function and a transfer function of an auxiliary system being strictly positive real. In addition, the novel function is considered in the local stability analysis problem of discrete-time Lur’e systems subject to a saturating feedback. A convex optimization problem based on sufficient LMI conditions is formulated to maximize an estimate of the basin of attraction. Another specificity of this new Lyapunov function is the fact that the estimate is composed of disconnected sets. Numerical examples reveal the effectiveness of this new Lyapunov function in providing a less conservative estimate with respect to the quadratic function.</description><subject>Absolute stability</subject><subject>Applied sciences</subject><subject>Automatic</subject><subject>Automation</subject><subject>Basin of attraction estimate</subject><subject>Bounded sector nonlinearity</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Derivatives</subject><subject>Engineering Sciences</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Lur’e systems</subject><subject>Lyapunov function</subject><subject>Lyapunov functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Saturation</subject><subject>Stability analysis</subject><subject>System theory</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAQx4MouH68Qy-CHlpnkjZtjyp-wYIH9Rym6RSztFtNssLefA1fzyexy4oePQ0z_P4zzE-IBCFDQH2-yGgVx4Gis5RJQJmBzkDlO2KGValSWSm9K2YAUKQIdbUvDkJYTG2OlZwJ9Ripcb2L64SW1K-DC8nYJa0L1nPkNLqBk_nKf318chLWIfIQjsReR33g4596KJ5vrp-u7tL5w-391cU8tbkuYiqx6SCvmcrKooYa2TasyqKpS7KdypG1rVtJkrSyGnXZUQuyapls01rM1aE42-59od68ejeQX5uRnLm7mJvNDKDEsij1O07s6ZZ99ePbikM0w_QC9z0teVwFg1BJKZUqYEKrLWr9GILn7nc3gtk4NQvz59RsnBrQZnI6RU9-rlCw1HeeltaF37zUUhdKyYm73HI86Xl37E2wjpeWW-fZRtOO7v9j31Oskh0</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>C. Gonzaga, Carlos A.</creator><creator>Jungers, Marc</creator><creator>Daafouz, Jamal</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8313-8790</orcidid><orcidid>https://orcid.org/0000-0002-6670-3249</orcidid></search><sort><creationdate>20120901</creationdate><title>Stability analysis of discrete-time Lur’e systems</title><author>C. Gonzaga, Carlos A. ; Jungers, Marc ; Daafouz, Jamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Absolute stability</topic><topic>Applied sciences</topic><topic>Automatic</topic><topic>Automation</topic><topic>Basin of attraction estimate</topic><topic>Bounded sector nonlinearity</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Derivatives</topic><topic>Engineering Sciences</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Lur’e systems</topic><topic>Lyapunov function</topic><topic>Lyapunov functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Saturation</topic><topic>Stability analysis</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>C. Gonzaga, Carlos A.</creatorcontrib><creatorcontrib>Jungers, Marc</creatorcontrib><creatorcontrib>Daafouz, Jamal</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>C. Gonzaga, Carlos A.</au><au>Jungers, Marc</au><au>Daafouz, Jamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of discrete-time Lur’e systems</atitle><jtitle>Automatica (Oxford)</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>48</volume><issue>9</issue><spage>2277</spage><epage>2283</epage><pages>2277-2283</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>A class of Lyapunov functions is proposed for discrete-time linear systems interconnected with a cone bounded nonlinearity. Using these functions, we propose sufficient conditions for the global stability analysis, in terms of linear matrix inequalities (LMI), only taking the bounded sector condition into account. Unlike frameworks based on the Lur’e-type function, the additional assumptions about the derivative or discrete variation of the nonlinearity are not necessary. Hence, a wider range of cone bounded nonlinearities can be covered. We also show that there is a link between global stability LMI conditions based on this new Lyapunov function and a transfer function of an auxiliary system being strictly positive real. In addition, the novel function is considered in the local stability analysis problem of discrete-time Lur’e systems subject to a saturating feedback. A convex optimization problem based on sufficient LMI conditions is formulated to maximize an estimate of the basin of attraction. Another specificity of this new Lyapunov function is the fact that the estimate is composed of disconnected sets. Numerical examples reveal the effectiveness of this new Lyapunov function in providing a less conservative estimate with respect to the quadratic function.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2012.06.034</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8313-8790</orcidid><orcidid>https://orcid.org/0000-0002-6670-3249</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2012-09, Vol.48 (9), p.2277-2283 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00717576v1 |
source | Elsevier |
subjects | Absolute stability Applied sciences Automatic Automation Basin of attraction estimate Bounded sector nonlinearity Computer science control theory systems Control system analysis Control theory. Systems Derivatives Engineering Sciences Estimates Exact sciences and technology Lur’e systems Lyapunov function Lyapunov functions Mathematical analysis Mathematical models Nonlinearity Saturation Stability analysis System theory |
title | Stability analysis of discrete-time Lur’e systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20discrete-time%20Lur%E2%80%99e%20systems&rft.jtitle=Automatica%20(Oxford)&rft.au=C.%20Gonzaga,%20Carlos%20A.&rft.date=2012-09-01&rft.volume=48&rft.issue=9&rft.spage=2277&rft.epage=2283&rft.pages=2277-2283&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2012.06.034&rft_dat=%3Cproquest_hal_p%3E1082223350%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-21bf049ea78c16091ecbe375b97acf341e6c9d2a2a63c6167fad028deacbdc143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082223350&rft_id=info:pmid/&rfr_iscdi=true |