Loading…
Nonlinear aspects of high Reynolds number channel flows
This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall deformations which can lead to flow separation. An asymptotic model is proposed by using the successive complementary expansion method with generalized asymptotic expansions. In particular, the model emphas...
Saved in:
Published in: | European journal of mechanics, B, Fluids B, Fluids, 2010-07, Vol.29 (4), p.295-304 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63 |
container_end_page | 304 |
container_issue | 4 |
container_start_page | 295 |
container_title | European journal of mechanics, B, Fluids |
container_volume | 29 |
creator | Cathalifaud, P. Mauss, J. Cousteix, J. |
description | This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall deformations which can lead to flow separation. An asymptotic model is proposed by using the successive complementary expansion method with generalized asymptotic expansions. In particular, the model emphasizes the asymmetry of the channel geometry by introducing a change of variables. It is shown that the model is more general than the models developed with the method of matched asymptotic expansions. Comparisons with Navier–Stokes solutions show that the model is well founded and enables us to treat original problems. |
doi_str_mv | 10.1016/j.euromechflu.2010.02.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00745781v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997754610000178</els_id><sourcerecordid>753668172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63</originalsourceid><addsrcrecordid>eNqNkEFr3DAQhUVpoNs0_8E9lNKDNyPJluRjWJqmsCQQchdjeVxr0UpbaZ2Sf18vG0KPPQ08vnkPPsY-c1hz4Op6t6Y5pz25aQzzWsCSg1gDiHdsxY2WtZYdvGcr6Dpd67ZRH9jHUnYA0AipVkzfpxh8JMwVlgO5Y6nSWE3-11Q90ktMYShVnPc95cpNGCOFagzpT_nELkYMha5e7yV7uv3-tLmrtw8_fm5utrVrlDnWToDgjRGgORrZNmOnB2GQAEwnxx6lQ41q1MpoGnonxCA61_YNYQ-ESl6yb-faCYM9ZL_H_GITent3s7WnDEA3rTb8mS_s1zN7yOn3TOVo9744CgEjpblY3UqlDNdiIbsz6XIqJdP4Vs3BnrTanf1Hqz1ptSCWsdPvl9cVLA7DmDE6X94KhDAShNYLtzlztNh59pRtcZ6io8HnRbMdkv-Ptb_JppLY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753668172</pqid></control><display><type>article</type><title>Nonlinear aspects of high Reynolds number channel flows</title><source>ScienceDirect Freedom Collection</source><creator>Cathalifaud, P. ; Mauss, J. ; Cousteix, J.</creator><creatorcontrib>Cathalifaud, P. ; Mauss, J. ; Cousteix, J.</creatorcontrib><description>This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall deformations which can lead to flow separation. An asymptotic model is proposed by using the successive complementary expansion method with generalized asymptotic expansions. In particular, the model emphasizes the asymmetry of the channel geometry by introducing a change of variables. It is shown that the model is more general than the models developed with the method of matched asymptotic expansions. Comparisons with Navier–Stokes solutions show that the model is well founded and enables us to treat original problems.</description><identifier>ISSN: 0997-7546</identifier><identifier>EISSN: 1873-7390</identifier><identifier>DOI: 10.1016/j.euromechflu.2010.02.002</identifier><language>eng</language><publisher>Issy-les-Moulineaux: Elsevier Masson SAS</publisher><subject>Asymmetry ; Asymptotic analysis ; Asymptotic expansions ; Asymptotic properties ; Channel flow ; Channels ; Engineering Sciences ; Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fluid mechanics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; High Reynolds number ; High-reynolds-number turbulence ; Interactive boundary layer ; Mathematical models ; Mechanics ; Navier-Stokes equations ; Physics ; Separation ; Turbulent flows, convection, and heat transfer ; Walls</subject><ispartof>European journal of mechanics, B, Fluids, 2010-07, Vol.29 (4), p.295-304</ispartof><rights>2010 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63</citedby><cites>FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22830277$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00745781$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cathalifaud, P.</creatorcontrib><creatorcontrib>Mauss, J.</creatorcontrib><creatorcontrib>Cousteix, J.</creatorcontrib><title>Nonlinear aspects of high Reynolds number channel flows</title><title>European journal of mechanics, B, Fluids</title><description>This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall deformations which can lead to flow separation. An asymptotic model is proposed by using the successive complementary expansion method with generalized asymptotic expansions. In particular, the model emphasizes the asymmetry of the channel geometry by introducing a change of variables. It is shown that the model is more general than the models developed with the method of matched asymptotic expansions. Comparisons with Navier–Stokes solutions show that the model is well founded and enables us to treat original problems.</description><subject>Asymmetry</subject><subject>Asymptotic analysis</subject><subject>Asymptotic expansions</subject><subject>Asymptotic properties</subject><subject>Channel flow</subject><subject>Channels</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High Reynolds number</subject><subject>High-reynolds-number turbulence</subject><subject>Interactive boundary layer</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Separation</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Walls</subject><issn>0997-7546</issn><issn>1873-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkEFr3DAQhUVpoNs0_8E9lNKDNyPJluRjWJqmsCQQchdjeVxr0UpbaZ2Sf18vG0KPPQ08vnkPPsY-c1hz4Op6t6Y5pz25aQzzWsCSg1gDiHdsxY2WtZYdvGcr6Dpd67ZRH9jHUnYA0AipVkzfpxh8JMwVlgO5Y6nSWE3-11Q90ktMYShVnPc95cpNGCOFagzpT_nELkYMha5e7yV7uv3-tLmrtw8_fm5utrVrlDnWToDgjRGgORrZNmOnB2GQAEwnxx6lQ41q1MpoGnonxCA61_YNYQ-ESl6yb-faCYM9ZL_H_GITent3s7WnDEA3rTb8mS_s1zN7yOn3TOVo9744CgEjpblY3UqlDNdiIbsz6XIqJdP4Vs3BnrTanf1Hqz1ptSCWsdPvl9cVLA7DmDE6X94KhDAShNYLtzlztNh59pRtcZ6io8HnRbMdkv-Ptb_JppLY</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Cathalifaud, P.</creator><creator>Mauss, J.</creator><creator>Cousteix, J.</creator><general>Elsevier Masson SAS</general><general>Elsevier Masson</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20100701</creationdate><title>Nonlinear aspects of high Reynolds number channel flows</title><author>Cathalifaud, P. ; Mauss, J. ; Cousteix, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Asymmetry</topic><topic>Asymptotic analysis</topic><topic>Asymptotic expansions</topic><topic>Asymptotic properties</topic><topic>Channel flow</topic><topic>Channels</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High Reynolds number</topic><topic>High-reynolds-number turbulence</topic><topic>Interactive boundary layer</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Separation</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cathalifaud, P.</creatorcontrib><creatorcontrib>Mauss, J.</creatorcontrib><creatorcontrib>Cousteix, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of mechanics, B, Fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cathalifaud, P.</au><au>Mauss, J.</au><au>Cousteix, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear aspects of high Reynolds number channel flows</atitle><jtitle>European journal of mechanics, B, Fluids</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>29</volume><issue>4</issue><spage>295</spage><epage>304</epage><pages>295-304</pages><issn>0997-7546</issn><eissn>1873-7390</eissn><abstract>This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall deformations which can lead to flow separation. An asymptotic model is proposed by using the successive complementary expansion method with generalized asymptotic expansions. In particular, the model emphasizes the asymmetry of the channel geometry by introducing a change of variables. It is shown that the model is more general than the models developed with the method of matched asymptotic expansions. Comparisons with Navier–Stokes solutions show that the model is well founded and enables us to treat original problems.</abstract><cop>Issy-les-Moulineaux</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechflu.2010.02.002</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0997-7546 |
ispartof | European journal of mechanics, B, Fluids, 2010-07, Vol.29 (4), p.295-304 |
issn | 0997-7546 1873-7390 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00745781v1 |
source | ScienceDirect Freedom Collection |
subjects | Asymmetry Asymptotic analysis Asymptotic expansions Asymptotic properties Channel flow Channels Engineering Sciences Exact sciences and technology Flows in ducts, channels, nozzles, and conduits Fluid dynamics Fluid mechanics Fluids mechanics Fundamental areas of phenomenology (including applications) High Reynolds number High-reynolds-number turbulence Interactive boundary layer Mathematical models Mechanics Navier-Stokes equations Physics Separation Turbulent flows, convection, and heat transfer Walls |
title | Nonlinear aspects of high Reynolds number channel flows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20aspects%20of%20high%20Reynolds%20number%20channel%20flows&rft.jtitle=European%20journal%20of%20mechanics,%20B,%20Fluids&rft.au=Cathalifaud,%20P.&rft.date=2010-07-01&rft.volume=29&rft.issue=4&rft.spage=295&rft.epage=304&rft.pages=295-304&rft.issn=0997-7546&rft.eissn=1873-7390&rft_id=info:doi/10.1016/j.euromechflu.2010.02.002&rft_dat=%3Cproquest_hal_p%3E753668172%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753668172&rft_id=info:pmid/&rfr_iscdi=true |