Loading…

Nonlinear aspects of high Reynolds number channel flows

This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall deformations which can lead to flow separation. An asymptotic model is proposed by using the successive complementary expansion method with generalized asymptotic expansions. In particular, the model emphas...

Full description

Saved in:
Bibliographic Details
Published in:European journal of mechanics, B, Fluids B, Fluids, 2010-07, Vol.29 (4), p.295-304
Main Authors: Cathalifaud, P., Mauss, J., Cousteix, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63
cites cdi_FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63
container_end_page 304
container_issue 4
container_start_page 295
container_title European journal of mechanics, B, Fluids
container_volume 29
creator Cathalifaud, P.
Mauss, J.
Cousteix, J.
description This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall deformations which can lead to flow separation. An asymptotic model is proposed by using the successive complementary expansion method with generalized asymptotic expansions. In particular, the model emphasizes the asymmetry of the channel geometry by introducing a change of variables. It is shown that the model is more general than the models developed with the method of matched asymptotic expansions. Comparisons with Navier–Stokes solutions show that the model is well founded and enables us to treat original problems.
doi_str_mv 10.1016/j.euromechflu.2010.02.002
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00745781v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997754610000178</els_id><sourcerecordid>753668172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63</originalsourceid><addsrcrecordid>eNqNkEFr3DAQhUVpoNs0_8E9lNKDNyPJluRjWJqmsCQQchdjeVxr0UpbaZ2Sf18vG0KPPQ08vnkPPsY-c1hz4Op6t6Y5pz25aQzzWsCSg1gDiHdsxY2WtZYdvGcr6Dpd67ZRH9jHUnYA0AipVkzfpxh8JMwVlgO5Y6nSWE3-11Q90ktMYShVnPc95cpNGCOFagzpT_nELkYMha5e7yV7uv3-tLmrtw8_fm5utrVrlDnWToDgjRGgORrZNmOnB2GQAEwnxx6lQ41q1MpoGnonxCA61_YNYQ-ESl6yb-faCYM9ZL_H_GITent3s7WnDEA3rTb8mS_s1zN7yOn3TOVo9744CgEjpblY3UqlDNdiIbsz6XIqJdP4Vs3BnrTanf1Hqz1ptSCWsdPvl9cVLA7DmDE6X94KhDAShNYLtzlztNh59pRtcZ6io8HnRbMdkv-Ptb_JppLY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753668172</pqid></control><display><type>article</type><title>Nonlinear aspects of high Reynolds number channel flows</title><source>ScienceDirect Freedom Collection</source><creator>Cathalifaud, P. ; Mauss, J. ; Cousteix, J.</creator><creatorcontrib>Cathalifaud, P. ; Mauss, J. ; Cousteix, J.</creatorcontrib><description>This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall deformations which can lead to flow separation. An asymptotic model is proposed by using the successive complementary expansion method with generalized asymptotic expansions. In particular, the model emphasizes the asymmetry of the channel geometry by introducing a change of variables. It is shown that the model is more general than the models developed with the method of matched asymptotic expansions. Comparisons with Navier–Stokes solutions show that the model is well founded and enables us to treat original problems.</description><identifier>ISSN: 0997-7546</identifier><identifier>EISSN: 1873-7390</identifier><identifier>DOI: 10.1016/j.euromechflu.2010.02.002</identifier><language>eng</language><publisher>Issy-les-Moulineaux: Elsevier Masson SAS</publisher><subject>Asymmetry ; Asymptotic analysis ; Asymptotic expansions ; Asymptotic properties ; Channel flow ; Channels ; Engineering Sciences ; Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fluid mechanics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; High Reynolds number ; High-reynolds-number turbulence ; Interactive boundary layer ; Mathematical models ; Mechanics ; Navier-Stokes equations ; Physics ; Separation ; Turbulent flows, convection, and heat transfer ; Walls</subject><ispartof>European journal of mechanics, B, Fluids, 2010-07, Vol.29 (4), p.295-304</ispartof><rights>2010 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63</citedby><cites>FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22830277$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00745781$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cathalifaud, P.</creatorcontrib><creatorcontrib>Mauss, J.</creatorcontrib><creatorcontrib>Cousteix, J.</creatorcontrib><title>Nonlinear aspects of high Reynolds number channel flows</title><title>European journal of mechanics, B, Fluids</title><description>This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall deformations which can lead to flow separation. An asymptotic model is proposed by using the successive complementary expansion method with generalized asymptotic expansions. In particular, the model emphasizes the asymmetry of the channel geometry by introducing a change of variables. It is shown that the model is more general than the models developed with the method of matched asymptotic expansions. Comparisons with Navier–Stokes solutions show that the model is well founded and enables us to treat original problems.</description><subject>Asymmetry</subject><subject>Asymptotic analysis</subject><subject>Asymptotic expansions</subject><subject>Asymptotic properties</subject><subject>Channel flow</subject><subject>Channels</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High Reynolds number</subject><subject>High-reynolds-number turbulence</subject><subject>Interactive boundary layer</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Separation</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Walls</subject><issn>0997-7546</issn><issn>1873-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkEFr3DAQhUVpoNs0_8E9lNKDNyPJluRjWJqmsCQQchdjeVxr0UpbaZ2Sf18vG0KPPQ08vnkPPsY-c1hz4Op6t6Y5pz25aQzzWsCSg1gDiHdsxY2WtZYdvGcr6Dpd67ZRH9jHUnYA0AipVkzfpxh8JMwVlgO5Y6nSWE3-11Q90ktMYShVnPc95cpNGCOFagzpT_nELkYMha5e7yV7uv3-tLmrtw8_fm5utrVrlDnWToDgjRGgORrZNmOnB2GQAEwnxx6lQ41q1MpoGnonxCA61_YNYQ-ESl6yb-faCYM9ZL_H_GITent3s7WnDEA3rTb8mS_s1zN7yOn3TOVo9744CgEjpblY3UqlDNdiIbsz6XIqJdP4Vs3BnrTanf1Hqz1ptSCWsdPvl9cVLA7DmDE6X94KhDAShNYLtzlztNh59pRtcZ6io8HnRbMdkv-Ptb_JppLY</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Cathalifaud, P.</creator><creator>Mauss, J.</creator><creator>Cousteix, J.</creator><general>Elsevier Masson SAS</general><general>Elsevier Masson</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20100701</creationdate><title>Nonlinear aspects of high Reynolds number channel flows</title><author>Cathalifaud, P. ; Mauss, J. ; Cousteix, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Asymmetry</topic><topic>Asymptotic analysis</topic><topic>Asymptotic expansions</topic><topic>Asymptotic properties</topic><topic>Channel flow</topic><topic>Channels</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High Reynolds number</topic><topic>High-reynolds-number turbulence</topic><topic>Interactive boundary layer</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Separation</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cathalifaud, P.</creatorcontrib><creatorcontrib>Mauss, J.</creatorcontrib><creatorcontrib>Cousteix, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of mechanics, B, Fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cathalifaud, P.</au><au>Mauss, J.</au><au>Cousteix, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear aspects of high Reynolds number channel flows</atitle><jtitle>European journal of mechanics, B, Fluids</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>29</volume><issue>4</issue><spage>295</spage><epage>304</epage><pages>295-304</pages><issn>0997-7546</issn><eissn>1873-7390</eissn><abstract>This paper considers the flow in a two-dimensional channel at high Reynolds number, with wall deformations which can lead to flow separation. An asymptotic model is proposed by using the successive complementary expansion method with generalized asymptotic expansions. In particular, the model emphasizes the asymmetry of the channel geometry by introducing a change of variables. It is shown that the model is more general than the models developed with the method of matched asymptotic expansions. Comparisons with Navier–Stokes solutions show that the model is well founded and enables us to treat original problems.</abstract><cop>Issy-les-Moulineaux</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechflu.2010.02.002</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0997-7546
ispartof European journal of mechanics, B, Fluids, 2010-07, Vol.29 (4), p.295-304
issn 0997-7546
1873-7390
language eng
recordid cdi_hal_primary_oai_HAL_hal_00745781v1
source ScienceDirect Freedom Collection
subjects Asymmetry
Asymptotic analysis
Asymptotic expansions
Asymptotic properties
Channel flow
Channels
Engineering Sciences
Exact sciences and technology
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Fluid mechanics
Fluids mechanics
Fundamental areas of phenomenology (including applications)
High Reynolds number
High-reynolds-number turbulence
Interactive boundary layer
Mathematical models
Mechanics
Navier-Stokes equations
Physics
Separation
Turbulent flows, convection, and heat transfer
Walls
title Nonlinear aspects of high Reynolds number channel flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20aspects%20of%20high%20Reynolds%20number%20channel%20flows&rft.jtitle=European%20journal%20of%20mechanics,%20B,%20Fluids&rft.au=Cathalifaud,%20P.&rft.date=2010-07-01&rft.volume=29&rft.issue=4&rft.spage=295&rft.epage=304&rft.pages=295-304&rft.issn=0997-7546&rft.eissn=1873-7390&rft_id=info:doi/10.1016/j.euromechflu.2010.02.002&rft_dat=%3Cproquest_hal_p%3E753668172%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-c2021482071a8354f97d28ae00893fba3ca7a6f7687edbc22d29c5b4eab0ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753668172&rft_id=info:pmid/&rfr_iscdi=true