Loading…

Hybrid methodology for hourly global radiation forecasting in Mediterranean area

The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a growing number of research teams. This paper proposes an original technique to model the insolation time series based on combining Artificial Neural Network (ANN) and Auto-Regressive and Movin...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2013-05, Vol.53, p.1-11
Main Authors: Voyant, Cyril, Muselli, Marc, Paoli, Christophe, Nivet, Marie-Laure
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-c179c3e78abd7a5e51244e491644682631b44ab8c023d5cb26260f7538eb461c3
cites cdi_FETCH-LOGICAL-c451t-c179c3e78abd7a5e51244e491644682631b44ab8c023d5cb26260f7538eb461c3
container_end_page 11
container_issue
container_start_page 1
container_title Renewable energy
container_volume 53
creator Voyant, Cyril
Muselli, Marc
Paoli, Christophe
Nivet, Marie-Laure
description The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a growing number of research teams. This paper proposes an original technique to model the insolation time series based on combining Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) model. While ANN by its non-linear nature is effective to predict cloudy days, ARMA techniques are more dedicated to sunny days without cloud occurrences. Thus, three hybrids models are suggested: the first proposes simply to use ARMA for 6 months in spring and summer and to use an optimized ANN for the other part of the year; the second model is equivalent to the first but with a seasonal learning; the last model depends on the error occurred the previous hour. These models were used to forecast the hourly global radiation for five places in Mediterranean area. The forecasting performance was compared among several models: the 3 above mentioned models, the best ANN and ARMA for each location. In the best configuration, the coupling of ANN and ARMA allows an improvement of more than 1%, with a maximum in autumn (3.4%) and a minimum in winter (0.9%) where ANN alone is the best.
doi_str_mv 10.1016/j.renene.2012.10.049
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00750486v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1500801618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-c179c3e78abd7a5e51244e491644682631b44ab8c023d5cb26260f7538eb461c3</originalsourceid><addsrcrecordid>eNqFkU-LFDEQxRtRcFz9BoJ9EfTQY1U6__q4LOoIIwq651CdTs9kyHTWpEeYb2-aXvYqdSh4-VXlUa-q3iJsEVB-Om2Tm0ptGSAr0hZ496zaoFZdA1Kz59UGOgkNco0vq1c5nwBQaMU31c_dtU9-qM9uPsYhhni41mNM9TFeUrjWhxB7CnWiwdPs47S8OUt59tOh9lP93Q1-dinR5GiqKTl6Xb0YKWT35rHfVPdfPv--2zX7H1-_3d3uG8sFzo1F1dnWKU39oEg4gYxzxzuUnBfHssWec-q1BdYOwvZMMgmjEq12PZdo25vq47r3SME8JH-mdDWRvNnd7s2iASgBXMu_WNgPK_uQ4p-Ly7M5-2xdCMV2vGSDUqFgrQL9f1QA6HJzXFC-ojbFnJMbn2wgmCUXczJrLmbJZVFLLmXs_eMPlC2FsdzO-vw0y2THhBKycO9WbqRo6JAKc_-rLCoGUJVUZfsPRmiXXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500801618</pqid></control><display><type>article</type><title>Hybrid methodology for hourly global radiation forecasting in Mediterranean area</title><source>ScienceDirect Journals</source><creator>Voyant, Cyril ; Muselli, Marc ; Paoli, Christophe ; Nivet, Marie-Laure</creator><creatorcontrib>Voyant, Cyril ; Muselli, Marc ; Paoli, Christophe ; Nivet, Marie-Laure</creatorcontrib><description>The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a growing number of research teams. This paper proposes an original technique to model the insolation time series based on combining Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) model. While ANN by its non-linear nature is effective to predict cloudy days, ARMA techniques are more dedicated to sunny days without cloud occurrences. Thus, three hybrids models are suggested: the first proposes simply to use ARMA for 6 months in spring and summer and to use an optimized ANN for the other part of the year; the second model is equivalent to the first but with a seasonal learning; the last model depends on the error occurred the previous hour. These models were used to forecast the hourly global radiation for five places in Mediterranean area. The forecasting performance was compared among several models: the 3 above mentioned models, the best ANN and ARMA for each location. In the best configuration, the coupling of ANN and ARMA allows an improvement of more than 1%, with a maximum in autumn (3.4%) and a minimum in winter (0.9%) where ANN alone is the best.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2012.10.049</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Autumn ; Clouds ; Computer Science ; Energy ; Environmental Engineering ; Environmental Sciences ; Exact sciences and technology ; Forecasting ; Information Retrieval ; Learning theory ; Mathematical models ; methodology ; Natural energy ; Neural networks ; Position (location) ; prediction ; Renewable energy ; renewable energy sources ; solar radiation ; spring ; summer ; time series analysis ; winter</subject><ispartof>Renewable energy, 2013-05, Vol.53, p.1-11</ispartof><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-c179c3e78abd7a5e51244e491644682631b44ab8c023d5cb26260f7538eb461c3</citedby><cites>FETCH-LOGICAL-c451t-c179c3e78abd7a5e51244e491644682631b44ab8c023d5cb26260f7538eb461c3</cites><orcidid>0000-0002-3093-1119 ; 0000-0003-0242-7377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26925756$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00750486$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Voyant, Cyril</creatorcontrib><creatorcontrib>Muselli, Marc</creatorcontrib><creatorcontrib>Paoli, Christophe</creatorcontrib><creatorcontrib>Nivet, Marie-Laure</creatorcontrib><title>Hybrid methodology for hourly global radiation forecasting in Mediterranean area</title><title>Renewable energy</title><description>The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a growing number of research teams. This paper proposes an original technique to model the insolation time series based on combining Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) model. While ANN by its non-linear nature is effective to predict cloudy days, ARMA techniques are more dedicated to sunny days without cloud occurrences. Thus, three hybrids models are suggested: the first proposes simply to use ARMA for 6 months in spring and summer and to use an optimized ANN for the other part of the year; the second model is equivalent to the first but with a seasonal learning; the last model depends on the error occurred the previous hour. These models were used to forecast the hourly global radiation for five places in Mediterranean area. The forecasting performance was compared among several models: the 3 above mentioned models, the best ANN and ARMA for each location. In the best configuration, the coupling of ANN and ARMA allows an improvement of more than 1%, with a maximum in autumn (3.4%) and a minimum in winter (0.9%) where ANN alone is the best.</description><subject>Applied sciences</subject><subject>Autumn</subject><subject>Clouds</subject><subject>Computer Science</subject><subject>Energy</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Information Retrieval</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>methodology</subject><subject>Natural energy</subject><subject>Neural networks</subject><subject>Position (location)</subject><subject>prediction</subject><subject>Renewable energy</subject><subject>renewable energy sources</subject><subject>solar radiation</subject><subject>spring</subject><subject>summer</subject><subject>time series analysis</subject><subject>winter</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU-LFDEQxRtRcFz9BoJ9EfTQY1U6__q4LOoIIwq651CdTs9kyHTWpEeYb2-aXvYqdSh4-VXlUa-q3iJsEVB-Om2Tm0ptGSAr0hZ496zaoFZdA1Kz59UGOgkNco0vq1c5nwBQaMU31c_dtU9-qM9uPsYhhni41mNM9TFeUrjWhxB7CnWiwdPs47S8OUt59tOh9lP93Q1-dinR5GiqKTl6Xb0YKWT35rHfVPdfPv--2zX7H1-_3d3uG8sFzo1F1dnWKU39oEg4gYxzxzuUnBfHssWec-q1BdYOwvZMMgmjEq12PZdo25vq47r3SME8JH-mdDWRvNnd7s2iASgBXMu_WNgPK_uQ4p-Ly7M5-2xdCMV2vGSDUqFgrQL9f1QA6HJzXFC-ojbFnJMbn2wgmCUXczJrLmbJZVFLLmXs_eMPlC2FsdzO-vw0y2THhBKycO9WbqRo6JAKc_-rLCoGUJVUZfsPRmiXXQ</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Voyant, Cyril</creator><creator>Muselli, Marc</creator><creator>Paoli, Christophe</creator><creator>Nivet, Marie-Laure</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3093-1119</orcidid><orcidid>https://orcid.org/0000-0003-0242-7377</orcidid></search><sort><creationdate>20130501</creationdate><title>Hybrid methodology for hourly global radiation forecasting in Mediterranean area</title><author>Voyant, Cyril ; Muselli, Marc ; Paoli, Christophe ; Nivet, Marie-Laure</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-c179c3e78abd7a5e51244e491644682631b44ab8c023d5cb26260f7538eb461c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Autumn</topic><topic>Clouds</topic><topic>Computer Science</topic><topic>Energy</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Information Retrieval</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>methodology</topic><topic>Natural energy</topic><topic>Neural networks</topic><topic>Position (location)</topic><topic>prediction</topic><topic>Renewable energy</topic><topic>renewable energy sources</topic><topic>solar radiation</topic><topic>spring</topic><topic>summer</topic><topic>time series analysis</topic><topic>winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voyant, Cyril</creatorcontrib><creatorcontrib>Muselli, Marc</creatorcontrib><creatorcontrib>Paoli, Christophe</creatorcontrib><creatorcontrib>Nivet, Marie-Laure</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voyant, Cyril</au><au>Muselli, Marc</au><au>Paoli, Christophe</au><au>Nivet, Marie-Laure</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid methodology for hourly global radiation forecasting in Mediterranean area</atitle><jtitle>Renewable energy</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>53</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a growing number of research teams. This paper proposes an original technique to model the insolation time series based on combining Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) model. While ANN by its non-linear nature is effective to predict cloudy days, ARMA techniques are more dedicated to sunny days without cloud occurrences. Thus, three hybrids models are suggested: the first proposes simply to use ARMA for 6 months in spring and summer and to use an optimized ANN for the other part of the year; the second model is equivalent to the first but with a seasonal learning; the last model depends on the error occurred the previous hour. These models were used to forecast the hourly global radiation for five places in Mediterranean area. The forecasting performance was compared among several models: the 3 above mentioned models, the best ANN and ARMA for each location. In the best configuration, the coupling of ANN and ARMA allows an improvement of more than 1%, with a maximum in autumn (3.4%) and a minimum in winter (0.9%) where ANN alone is the best.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2012.10.049</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3093-1119</orcidid><orcidid>https://orcid.org/0000-0003-0242-7377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2013-05, Vol.53, p.1-11
issn 0960-1481
1879-0682
language eng
recordid cdi_hal_primary_oai_HAL_hal_00750486v1
source ScienceDirect Journals
subjects Applied sciences
Autumn
Clouds
Computer Science
Energy
Environmental Engineering
Environmental Sciences
Exact sciences and technology
Forecasting
Information Retrieval
Learning theory
Mathematical models
methodology
Natural energy
Neural networks
Position (location)
prediction
Renewable energy
renewable energy sources
solar radiation
spring
summer
time series analysis
winter
title Hybrid methodology for hourly global radiation forecasting in Mediterranean area
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20methodology%20for%20hourly%20global%20radiation%20forecasting%20in%20Mediterranean%20area&rft.jtitle=Renewable%20energy&rft.au=Voyant,%20Cyril&rft.date=2013-05-01&rft.volume=53&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2012.10.049&rft_dat=%3Cproquest_hal_p%3E1500801618%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-c179c3e78abd7a5e51244e491644682631b44ab8c023d5cb26260f7538eb461c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1500801618&rft_id=info:pmid/&rfr_iscdi=true