Loading…
Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes
Variations of the volume of warm water above the thermocline in the equatorial Pacific are a good predictor of ENSO (El Niño/Southern Oscillation) and are thought to be critical for its preconditioning and development. In this study, the Warm Water Volume (WWV) interannual variability is analysed us...
Saved in:
Published in: | Climate dynamics 2012-03, Vol.38 (5-6), p.1031-1046 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c624t-7b2bc0396dce13b5e6464acb7871a6510ca94d2a0f83daee11bb470b5dc66e523 |
---|---|
cites | cdi_FETCH-LOGICAL-c624t-7b2bc0396dce13b5e6464acb7871a6510ca94d2a0f83daee11bb470b5dc66e523 |
container_end_page | 1046 |
container_issue | 5-6 |
container_start_page | 1031 |
container_title | Climate dynamics |
container_volume | 38 |
creator | Lengaigne, M. Hausmann, U. Madec, G. Menkes, C. Vialard, J. Molines, J. M. |
description | Variations of the volume of warm water above the thermocline in the equatorial Pacific are a good predictor of ENSO (El Niño/Southern Oscillation) and are thought to be critical for its preconditioning and development. In this study, the Warm Water Volume (WWV) interannual variability is analysed using forced general circulation model experiments and an original method for diagnosing processes responsible for WWV variations. The meridional recharge/discharge to higher latitudes drives 60% of the ENSO-related equatorial WWV variations, while diabatic processes in the eastern equatorial Pacific account for the remaining 40%. Interior meridional transport is partially compensated by western boundary transports, especially in the southern hemisphere. Diabatic equatorial WWV formation (depletions) during La Niña (El Niño) are explained by enhanced (reduced) diathermal transport through enhanced (reduced) vertical mixing and penetrating solar forcing at the 20°C isotherm depth. The respective contribution of diabatic and adiabatic processes during build-ups/depletions strongly varies from event-to-event. The WWV build-up during neutral ENSO phases (e.g. 1980–1982) is almost entirely controlled by meridional recharge, providing a text-book example for the recharge/discharge oscillator’s theory. On the other hand, diabatic processes are particularly active during the strongest La Niña events (1984, 1988, 1999), contributing to more than 70% of the WWV build-up, with heating by penetrative solar fluxes explaining as much as 30% of the total build-up due to a very shallow thermocline in the eastern Pacific. This study does not invalidate the recharge/discharge oscillator theory but rather emphasizes the importance of equatorial diabatic processes and western boundary transports in controlling WWV changes. |
doi_str_mv | 10.1007/s00382-011-1051-z |
format | article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00755344v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A306249311</galeid><sourcerecordid>A306249311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-7b2bc0396dce13b5e6464acb7871a6510ca94d2a0f83daee11bb470b5dc66e523</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEEmXhB3CLkABxSLHjON5wW1VAKy0C8XG2Js5k15WTtJ5kgR747cyS1ZYiISu28uaZieedSZKnUpxKIcxrEkIt80xImUmhZXZzLzmRhWJlWRX3kxNRKZEZbfTD5BHRpRCyKE1-kvz6gG4LvaeOUjf0YxxC8P0m_Q6x423EmO6GMHWY-p5foO8nCOkOoofRDz2xnI5bTPF6gnFgNaSfwPnWuzdp46FmyqU7jDRRCkfhKg4OiZAeJw9aCIRPDuci-fbu7dez82z98f3F2WqduTIvxszUee2EqsrGoVS1xrIoC3C1WRoJpZbCQVU0OYh2qRpAlLKuCyNq3biyRJ2rRfJqzruFYK-i7yD-tAN4e75a273GHmqtimInmX05s3zL6wlptJ0nhyFAj8NEttL8c6PY0UXy7B_ycphiz4XYKleFklobhk5naAMBre_bYYzgeDXYebYcW8_6SgmutFJS3t71ELBvC_4YNzAR2Ysvn--yL_5itwhh3BL3609v7oJyBl0ciCK2RxeksPsJsvMEWZ4gu58ge8Mxzw_lATkILXffeToG5rqUhh_m8pkj_tRvMN7a8P_kvwHYstXE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923431557</pqid></control><display><type>article</type><title>Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes</title><source>Springer Nature</source><creator>Lengaigne, M. ; Hausmann, U. ; Madec, G. ; Menkes, C. ; Vialard, J. ; Molines, J. M.</creator><creatorcontrib>Lengaigne, M. ; Hausmann, U. ; Madec, G. ; Menkes, C. ; Vialard, J. ; Molines, J. M.</creatorcontrib><description>Variations of the volume of warm water above the thermocline in the equatorial Pacific are a good predictor of ENSO (El Niño/Southern Oscillation) and are thought to be critical for its preconditioning and development. In this study, the Warm Water Volume (WWV) interannual variability is analysed using forced general circulation model experiments and an original method for diagnosing processes responsible for WWV variations. The meridional recharge/discharge to higher latitudes drives 60% of the ENSO-related equatorial WWV variations, while diabatic processes in the eastern equatorial Pacific account for the remaining 40%. Interior meridional transport is partially compensated by western boundary transports, especially in the southern hemisphere. Diabatic equatorial WWV formation (depletions) during La Niña (El Niño) are explained by enhanced (reduced) diathermal transport through enhanced (reduced) vertical mixing and penetrating solar forcing at the 20°C isotherm depth. The respective contribution of diabatic and adiabatic processes during build-ups/depletions strongly varies from event-to-event. The WWV build-up during neutral ENSO phases (e.g. 1980–1982) is almost entirely controlled by meridional recharge, providing a text-book example for the recharge/discharge oscillator’s theory. On the other hand, diabatic processes are particularly active during the strongest La Niña events (1984, 1988, 1999), contributing to more than 70% of the WWV build-up, with heating by penetrative solar fluxes explaining as much as 30% of the total build-up due to a very shallow thermocline in the eastern Pacific. This study does not invalidate the recharge/discharge oscillator theory but rather emphasizes the importance of equatorial diabatic processes and western boundary transports in controlling WWV changes.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-011-1051-z</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Adiabatic processes ; Atmospheric circulation ; Atmospheric temperature ; Climate ; Climatology ; Climatology. Bioclimatology. Climate change ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; El Nino ; Environmental aspects ; Environmental Sciences ; Exact sciences and technology ; External geophysics ; Freshwater ; Geophysics ; Geophysics/Geodesy ; Global Changes ; La Nina ; Marine ; Meteorology ; Ocean currents ; Ocean-atmosphere interaction ; Oceanography ; Physics ; Recharge ; Sciences of the Universe ; Southern Oscillation ; Thermocline ; Thermoclines (Oceanography) ; Thermodynamics ; Water temperature</subject><ispartof>Climate dynamics, 2012-03, Vol.38 (5-6), p.1031-1046</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer-Verlag 2012</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-7b2bc0396dce13b5e6464acb7871a6510ca94d2a0f83daee11bb470b5dc66e523</citedby><cites>FETCH-LOGICAL-c624t-7b2bc0396dce13b5e6464acb7871a6510ca94d2a0f83daee11bb470b5dc66e523</cites><orcidid>0000-0002-6447-4198 ; 0000-0002-0044-036X ; 0000-0003-1665-6816 ; 0000-0001-6876-3766 ; 0000-0002-1457-9696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25617561$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00755344$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lengaigne, M.</creatorcontrib><creatorcontrib>Hausmann, U.</creatorcontrib><creatorcontrib>Madec, G.</creatorcontrib><creatorcontrib>Menkes, C.</creatorcontrib><creatorcontrib>Vialard, J.</creatorcontrib><creatorcontrib>Molines, J. M.</creatorcontrib><title>Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Variations of the volume of warm water above the thermocline in the equatorial Pacific are a good predictor of ENSO (El Niño/Southern Oscillation) and are thought to be critical for its preconditioning and development. In this study, the Warm Water Volume (WWV) interannual variability is analysed using forced general circulation model experiments and an original method for diagnosing processes responsible for WWV variations. The meridional recharge/discharge to higher latitudes drives 60% of the ENSO-related equatorial WWV variations, while diabatic processes in the eastern equatorial Pacific account for the remaining 40%. Interior meridional transport is partially compensated by western boundary transports, especially in the southern hemisphere. Diabatic equatorial WWV formation (depletions) during La Niña (El Niño) are explained by enhanced (reduced) diathermal transport through enhanced (reduced) vertical mixing and penetrating solar forcing at the 20°C isotherm depth. The respective contribution of diabatic and adiabatic processes during build-ups/depletions strongly varies from event-to-event. The WWV build-up during neutral ENSO phases (e.g. 1980–1982) is almost entirely controlled by meridional recharge, providing a text-book example for the recharge/discharge oscillator’s theory. On the other hand, diabatic processes are particularly active during the strongest La Niña events (1984, 1988, 1999), contributing to more than 70% of the WWV build-up, with heating by penetrative solar fluxes explaining as much as 30% of the total build-up due to a very shallow thermocline in the eastern Pacific. This study does not invalidate the recharge/discharge oscillator theory but rather emphasizes the importance of equatorial diabatic processes and western boundary transports in controlling WWV changes.</description><subject>Adiabatic processes</subject><subject>Atmospheric circulation</subject><subject>Atmospheric temperature</subject><subject>Climate</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>El Nino</subject><subject>Environmental aspects</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Freshwater</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Global Changes</subject><subject>La Nina</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Ocean currents</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceanography</subject><subject>Physics</subject><subject>Recharge</subject><subject>Sciences of the Universe</subject><subject>Southern Oscillation</subject><subject>Thermocline</subject><subject>Thermoclines (Oceanography)</subject><subject>Thermodynamics</subject><subject>Water temperature</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kk1v1DAQhiMEEmXhB3CLkABxSLHjON5wW1VAKy0C8XG2Js5k15WTtJ5kgR747cyS1ZYiISu28uaZieedSZKnUpxKIcxrEkIt80xImUmhZXZzLzmRhWJlWRX3kxNRKZEZbfTD5BHRpRCyKE1-kvz6gG4LvaeOUjf0YxxC8P0m_Q6x423EmO6GMHWY-p5foO8nCOkOoofRDz2xnI5bTPF6gnFgNaSfwPnWuzdp46FmyqU7jDRRCkfhKg4OiZAeJw9aCIRPDuci-fbu7dez82z98f3F2WqduTIvxszUee2EqsrGoVS1xrIoC3C1WRoJpZbCQVU0OYh2qRpAlLKuCyNq3biyRJ2rRfJqzruFYK-i7yD-tAN4e75a273GHmqtimInmX05s3zL6wlptJ0nhyFAj8NEttL8c6PY0UXy7B_ycphiz4XYKleFklobhk5naAMBre_bYYzgeDXYebYcW8_6SgmutFJS3t71ELBvC_4YNzAR2Ysvn--yL_5itwhh3BL3609v7oJyBl0ciCK2RxeksPsJsvMEWZ4gu58ge8Mxzw_lATkILXffeToG5rqUhh_m8pkj_tRvMN7a8P_kvwHYstXE</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Lengaigne, M.</creator><creator>Hausmann, U.</creator><creator>Madec, G.</creator><creator>Menkes, C.</creator><creator>Vialard, J.</creator><creator>Molines, J. M.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6447-4198</orcidid><orcidid>https://orcid.org/0000-0002-0044-036X</orcidid><orcidid>https://orcid.org/0000-0003-1665-6816</orcidid><orcidid>https://orcid.org/0000-0001-6876-3766</orcidid><orcidid>https://orcid.org/0000-0002-1457-9696</orcidid></search><sort><creationdate>20120301</creationdate><title>Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes</title><author>Lengaigne, M. ; Hausmann, U. ; Madec, G. ; Menkes, C. ; Vialard, J. ; Molines, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-7b2bc0396dce13b5e6464acb7871a6510ca94d2a0f83daee11bb470b5dc66e523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adiabatic processes</topic><topic>Atmospheric circulation</topic><topic>Atmospheric temperature</topic><topic>Climate</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>El Nino</topic><topic>Environmental aspects</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Freshwater</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Global Changes</topic><topic>La Nina</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Ocean currents</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceanography</topic><topic>Physics</topic><topic>Recharge</topic><topic>Sciences of the Universe</topic><topic>Southern Oscillation</topic><topic>Thermocline</topic><topic>Thermoclines (Oceanography)</topic><topic>Thermodynamics</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lengaigne, M.</creatorcontrib><creatorcontrib>Hausmann, U.</creatorcontrib><creatorcontrib>Madec, G.</creatorcontrib><creatorcontrib>Menkes, C.</creatorcontrib><creatorcontrib>Vialard, J.</creatorcontrib><creatorcontrib>Molines, J. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lengaigne, M.</au><au>Hausmann, U.</au><au>Madec, G.</au><au>Menkes, C.</au><au>Vialard, J.</au><au>Molines, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>38</volume><issue>5-6</issue><spage>1031</spage><epage>1046</epage><pages>1031-1046</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>Variations of the volume of warm water above the thermocline in the equatorial Pacific are a good predictor of ENSO (El Niño/Southern Oscillation) and are thought to be critical for its preconditioning and development. In this study, the Warm Water Volume (WWV) interannual variability is analysed using forced general circulation model experiments and an original method for diagnosing processes responsible for WWV variations. The meridional recharge/discharge to higher latitudes drives 60% of the ENSO-related equatorial WWV variations, while diabatic processes in the eastern equatorial Pacific account for the remaining 40%. Interior meridional transport is partially compensated by western boundary transports, especially in the southern hemisphere. Diabatic equatorial WWV formation (depletions) during La Niña (El Niño) are explained by enhanced (reduced) diathermal transport through enhanced (reduced) vertical mixing and penetrating solar forcing at the 20°C isotherm depth. The respective contribution of diabatic and adiabatic processes during build-ups/depletions strongly varies from event-to-event. The WWV build-up during neutral ENSO phases (e.g. 1980–1982) is almost entirely controlled by meridional recharge, providing a text-book example for the recharge/discharge oscillator’s theory. On the other hand, diabatic processes are particularly active during the strongest La Niña events (1984, 1988, 1999), contributing to more than 70% of the WWV build-up, with heating by penetrative solar fluxes explaining as much as 30% of the total build-up due to a very shallow thermocline in the eastern Pacific. This study does not invalidate the recharge/discharge oscillator theory but rather emphasizes the importance of equatorial diabatic processes and western boundary transports in controlling WWV changes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00382-011-1051-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6447-4198</orcidid><orcidid>https://orcid.org/0000-0002-0044-036X</orcidid><orcidid>https://orcid.org/0000-0003-1665-6816</orcidid><orcidid>https://orcid.org/0000-0001-6876-3766</orcidid><orcidid>https://orcid.org/0000-0002-1457-9696</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2012-03, Vol.38 (5-6), p.1031-1046 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00755344v1 |
source | Springer Nature |
subjects | Adiabatic processes Atmospheric circulation Atmospheric temperature Climate Climatology Climatology. Bioclimatology. Climate change Earth and Environmental Science Earth Sciences Earth, ocean, space El Nino Environmental aspects Environmental Sciences Exact sciences and technology External geophysics Freshwater Geophysics Geophysics/Geodesy Global Changes La Nina Marine Meteorology Ocean currents Ocean-atmosphere interaction Oceanography Physics Recharge Sciences of the Universe Southern Oscillation Thermocline Thermoclines (Oceanography) Thermodynamics Water temperature |
title | Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20controlling%20warm%20water%20volume%20interannual%20variations%20in%20the%20equatorial%20Pacific:%20diabatic%20versus%20adiabatic%20processes&rft.jtitle=Climate%20dynamics&rft.au=Lengaigne,%20M.&rft.date=2012-03-01&rft.volume=38&rft.issue=5-6&rft.spage=1031&rft.epage=1046&rft.pages=1031-1046&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-011-1051-z&rft_dat=%3Cgale_hal_p%3EA306249311%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c624t-7b2bc0396dce13b5e6464acb7871a6510ca94d2a0f83daee11bb470b5dc66e523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923431557&rft_id=info:pmid/&rft_galeid=A306249311&rfr_iscdi=true |