Loading…

Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales

How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Bacteriology 2012-07, Vol.194 (13), p.3426-3436
Main Authors: Passot, Fanny M, Calderon, Virginie, Fichant, Gwennaele, Lane, David, Pasta, Franck
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63
cites cdi_FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63
container_end_page 3436
container_issue 13
container_start_page 3426
container_title Journal of Bacteriology
container_volume 194
creator Passot, Fanny M
Calderon, Virginie
Fichant, Gwennaele
Lane, David
Pasta, Franck
description How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.
doi_str_mv 10.1128/JB.00041-12
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00760173v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020190489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63</originalsourceid><addsrcrecordid>eNqNks1v1DAQxSMEotvCiTtEICQQShl_Jr4gdVeFUq0EUqnEzfIm9sZLYhc72ar_PU53KdATJ0ue3zz7vZkse4bgGCFcvT-fHwMARQXCD7IZAlEVjBF4mM0AMCoEEuQgO4xxA4AoZfhxdoAxw7gSYpZ9X2g3BN_roPO5dY1161y5Jj_d-m4crHe5N_miTYSPvldd_lWFwd4WLm7ioPuYW5cPbeoew4_Wd40OVnU6PskeGdVF_XR_HmWXH0-_Lc6K5ZdPnxcny6JmrBwKwrQBgg1w3JTAtalEw2HFiFkRrilhQoHSyjRC8ZrqlQZNjC4rhhpkcM3JUfZhp3s1rnrd1JMd1cmrYHsVbqRXVv5bcbaVa7-VhBJaUpoE3u4E2nttZydLOd0BlBxQSbYosW_2jwX_c9RxkL2Nte465bQfo0SAKecIl-x_UEACaCUS-uoeuvFjcCm1iUKEUcYn6t2OqoOPMWhz91kEcloEeT6Xt4sgEU70879juWN_Tz4Br_eAirXqTFCutvEPxwELxicfL_fx2HV7bYOWKvZys5JIUIlIihFPQ3ixg4zyUq1DErq8SP7YtHJVJTD5BeXFznE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021354569</pqid></control><display><type>article</type><title>Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales</title><source>PubMed Central Free</source><source>American Society for Microbiology Journals</source><creator>Passot, Fanny M ; Calderon, Virginie ; Fichant, Gwennaele ; Lane, David ; Pasta, Franck</creator><creatorcontrib>Passot, Fanny M ; Calderon, Virginie ; Fichant, Gwennaele ; Lane, David ; Pasta, Franck</creatorcontrib><description>How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.</description><identifier>ISSN: 0021-9193</identifier><identifier>EISSN: 1098-5530</identifier><identifier>EISSN: 1067-8832</identifier><identifier>DOI: 10.1128/JB.00041-12</identifier><identifier>PMID: 22522899</identifier><identifier>CODEN: JOBAAY</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>bacteria ; Bacterial Proteins ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Base Sequence ; Betaproteobacteria ; Betaproteobacteria - genetics ; binding proteins ; Bioassays ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Burkholderia ; Burkholderia cenocepacia ; Burkholderia cenocepacia - genetics ; Burkholderia cenocepacia - growth &amp; development ; Centromere ; Centromere - metabolism ; centromeres ; Chromosome Segregation ; Chromosomes ; Chromosomes, Bacterial ; Chromosomes, Bacterial - genetics ; Chromosomes, Bacterial - metabolism ; Computational Biology ; cystic fibrosis ; Electrophoretic Mobility Shift Assay ; evolution ; Evolution, Molecular ; extended families ; Fundamental and applied biological sciences. Psychology ; gel electrophoresis ; genome ; Genomes ; Gram-negative bacteria ; Humans ; Life Sciences ; Microbiology ; Microbiology and Parasitology ; Miscellaneous ; Molecular Sequence Data ; Mutation ; pathogens ; Plasmids ; Plasmids - genetics ; Ralstonia pickettii ; Replicon</subject><ispartof>Journal of Bacteriology, 2012-07, Vol.194 (13), p.3426-3436</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jul 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2012, American Society for Microbiology. All Rights Reserved. 2012 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63</citedby><cites>FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63</cites><orcidid>0000-0002-0257-816X ; 0000-0001-5480-0239 ; 0000-0002-8656-4725 ; 0000-0002-4267-3452 ; 0000-0003-4972-5494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434744/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434744/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,3189,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26029565$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22522899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00760173$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Passot, Fanny M</creatorcontrib><creatorcontrib>Calderon, Virginie</creatorcontrib><creatorcontrib>Fichant, Gwennaele</creatorcontrib><creatorcontrib>Lane, David</creatorcontrib><creatorcontrib>Pasta, Franck</creatorcontrib><title>Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales</title><title>Journal of Bacteriology</title><addtitle>J Bacteriol</addtitle><description>How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.</description><subject>bacteria</subject><subject>Bacterial Proteins</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Base Sequence</subject><subject>Betaproteobacteria</subject><subject>Betaproteobacteria - genetics</subject><subject>binding proteins</subject><subject>Bioassays</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Burkholderia</subject><subject>Burkholderia cenocepacia</subject><subject>Burkholderia cenocepacia - genetics</subject><subject>Burkholderia cenocepacia - growth &amp; development</subject><subject>Centromere</subject><subject>Centromere - metabolism</subject><subject>centromeres</subject><subject>Chromosome Segregation</subject><subject>Chromosomes</subject><subject>Chromosomes, Bacterial</subject><subject>Chromosomes, Bacterial - genetics</subject><subject>Chromosomes, Bacterial - metabolism</subject><subject>Computational Biology</subject><subject>cystic fibrosis</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>extended families</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gel electrophoresis</subject><subject>genome</subject><subject>Genomes</subject><subject>Gram-negative bacteria</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Microbiology and Parasitology</subject><subject>Miscellaneous</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>pathogens</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Ralstonia pickettii</subject><subject>Replicon</subject><issn>0021-9193</issn><issn>1098-5530</issn><issn>1067-8832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNks1v1DAQxSMEotvCiTtEICQQShl_Jr4gdVeFUq0EUqnEzfIm9sZLYhc72ar_PU53KdATJ0ue3zz7vZkse4bgGCFcvT-fHwMARQXCD7IZAlEVjBF4mM0AMCoEEuQgO4xxA4AoZfhxdoAxw7gSYpZ9X2g3BN_roPO5dY1161y5Jj_d-m4crHe5N_miTYSPvldd_lWFwd4WLm7ioPuYW5cPbeoew4_Wd40OVnU6PskeGdVF_XR_HmWXH0-_Lc6K5ZdPnxcny6JmrBwKwrQBgg1w3JTAtalEw2HFiFkRrilhQoHSyjRC8ZrqlQZNjC4rhhpkcM3JUfZhp3s1rnrd1JMd1cmrYHsVbqRXVv5bcbaVa7-VhBJaUpoE3u4E2nttZydLOd0BlBxQSbYosW_2jwX_c9RxkL2Nte465bQfo0SAKecIl-x_UEACaCUS-uoeuvFjcCm1iUKEUcYn6t2OqoOPMWhz91kEcloEeT6Xt4sgEU70879juWN_Tz4Br_eAirXqTFCutvEPxwELxicfL_fx2HV7bYOWKvZys5JIUIlIihFPQ3ixg4zyUq1DErq8SP7YtHJVJTD5BeXFznE</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Passot, Fanny M</creator><creator>Calderon, Virginie</creator><creator>Fichant, Gwennaele</creator><creator>Lane, David</creator><creator>Pasta, Franck</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0257-816X</orcidid><orcidid>https://orcid.org/0000-0001-5480-0239</orcidid><orcidid>https://orcid.org/0000-0002-8656-4725</orcidid><orcidid>https://orcid.org/0000-0002-4267-3452</orcidid><orcidid>https://orcid.org/0000-0003-4972-5494</orcidid></search><sort><creationdate>20120701</creationdate><title>Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales</title><author>Passot, Fanny M ; Calderon, Virginie ; Fichant, Gwennaele ; Lane, David ; Pasta, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>bacteria</topic><topic>Bacterial Proteins</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Base Sequence</topic><topic>Betaproteobacteria</topic><topic>Betaproteobacteria - genetics</topic><topic>binding proteins</topic><topic>Bioassays</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Burkholderia</topic><topic>Burkholderia cenocepacia</topic><topic>Burkholderia cenocepacia - genetics</topic><topic>Burkholderia cenocepacia - growth &amp; development</topic><topic>Centromere</topic><topic>Centromere - metabolism</topic><topic>centromeres</topic><topic>Chromosome Segregation</topic><topic>Chromosomes</topic><topic>Chromosomes, Bacterial</topic><topic>Chromosomes, Bacterial - genetics</topic><topic>Chromosomes, Bacterial - metabolism</topic><topic>Computational Biology</topic><topic>cystic fibrosis</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>extended families</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gel electrophoresis</topic><topic>genome</topic><topic>Genomes</topic><topic>Gram-negative bacteria</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Microbiology and Parasitology</topic><topic>Miscellaneous</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>pathogens</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Ralstonia pickettii</topic><topic>Replicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Passot, Fanny M</creatorcontrib><creatorcontrib>Calderon, Virginie</creatorcontrib><creatorcontrib>Fichant, Gwennaele</creatorcontrib><creatorcontrib>Lane, David</creatorcontrib><creatorcontrib>Pasta, Franck</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Bacteriology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Passot, Fanny M</au><au>Calderon, Virginie</au><au>Fichant, Gwennaele</au><au>Lane, David</au><au>Pasta, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales</atitle><jtitle>Journal of Bacteriology</jtitle><addtitle>J Bacteriol</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>194</volume><issue>13</issue><spage>3426</spage><epage>3436</epage><pages>3426-3436</pages><issn>0021-9193</issn><eissn>1098-5530</eissn><eissn>1067-8832</eissn><coden>JOBAAY</coden><abstract>How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>22522899</pmid><doi>10.1128/JB.00041-12</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0257-816X</orcidid><orcidid>https://orcid.org/0000-0001-5480-0239</orcidid><orcidid>https://orcid.org/0000-0002-8656-4725</orcidid><orcidid>https://orcid.org/0000-0002-4267-3452</orcidid><orcidid>https://orcid.org/0000-0003-4972-5494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9193
ispartof Journal of Bacteriology, 2012-07, Vol.194 (13), p.3426-3436
issn 0021-9193
1098-5530
1067-8832
language eng
recordid cdi_hal_primary_oai_HAL_hal_00760173v1
source PubMed Central Free; American Society for Microbiology Journals
subjects bacteria
Bacterial Proteins
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Base Sequence
Betaproteobacteria
Betaproteobacteria - genetics
binding proteins
Bioassays
Biochemistry, Molecular Biology
Biological and medical sciences
Burkholderia
Burkholderia cenocepacia
Burkholderia cenocepacia - genetics
Burkholderia cenocepacia - growth & development
Centromere
Centromere - metabolism
centromeres
Chromosome Segregation
Chromosomes
Chromosomes, Bacterial
Chromosomes, Bacterial - genetics
Chromosomes, Bacterial - metabolism
Computational Biology
cystic fibrosis
Electrophoretic Mobility Shift Assay
evolution
Evolution, Molecular
extended families
Fundamental and applied biological sciences. Psychology
gel electrophoresis
genome
Genomes
Gram-negative bacteria
Humans
Life Sciences
Microbiology
Microbiology and Parasitology
Miscellaneous
Molecular Sequence Data
Mutation
pathogens
Plasmids
Plasmids - genetics
Ralstonia pickettii
Replicon
title Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centromere%20Binding%20and%20Evolution%20of%20Chromosomal%20Partition%20Systems%20in%20the%20Burkholderiales&rft.jtitle=Journal%20of%20Bacteriology&rft.au=Passot,%20Fanny%20M&rft.date=2012-07-01&rft.volume=194&rft.issue=13&rft.spage=3426&rft.epage=3436&rft.pages=3426-3436&rft.issn=0021-9193&rft.eissn=1098-5530&rft.coden=JOBAAY&rft_id=info:doi/10.1128/JB.00041-12&rft_dat=%3Cproquest_hal_p%3E1020190489%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1021354569&rft_id=info:pmid/22522899&rfr_iscdi=true