Loading…

Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views

Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2013-02, Vol.19 (2), p.210-224
Main Authors: Laffont, P., Bousseau, A., Drettakis, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3
cites cdi_FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3
container_end_page 224
container_issue 2
container_start_page 210
container_title IEEE transactions on visualization and computer graphics
container_volume 19
creator Laffont, P.
Bousseau, A.
Drettakis, G.
description Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this problem. In this paper, we propose a method to estimate intrinsic images from multiple views of an outdoor scene without the need for precise geometry and with a few manual steps to calibrate the input. We use multiview stereo to automatically reconstruct a 3D point cloud of the scene. Although this point cloud is sparse and incomplete, we show that it provides the necessary information to compute plausible sky and indirect illumination at each 3D point. We then introduce an optimization method to estimate sun visibility over the point cloud. This algorithm compensates for the lack of accurate geometry and allows the extraction of precise shadows in the final image. We finally propagate the information computed over the sparse point cloud to every pixel in the photograph using image-guided propagation. Our propagation not only separates reflectance from illumination, but also decomposes the illumination into a sun, sky, and indirect layer. This rich decomposition allows novel image manipulations as demonstrated by our results.
doi_str_mv 10.1109/TVCG.2012.112
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00761121v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6185549</ieee_id><sourcerecordid>1711547943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3</originalsourceid><addsrcrecordid>eNo9kM1LwzAYh4MoOj-OngTJUQ-dSZrP45i6DSaCzl1DlqYaaZvZtIr_vRmbO71fDz9eHgAuMRpijNTdYjmeDAnCJI3kAAywojhDDPHD1CMhMsIJPwGnMX4ihCmV6hicEMKQlEoNwPTF2w84a7rWN9FbOKvNu4P3zoZ6HaLvfGhgKOFz3xUhtPDVusZFWLahhk991fl15eDSu594Do5KU0V3satn4O3xYTGeZvPnyWw8mmeWMtJlkqafOMtXhDPJ1UpIRXApSmaFYQg7Y1VhpcilFUhYrqiyuWWW54UoqC1NfgZut7kfptLr1tem_dXBeD0dzfVmh5DgSQX-xom92bLrNnz1Lna69tG6qjKNC33UWGDMqFA0T2i2RW0bYmxduc_GSG9E641ovRGdRpL46110v6pdsaf_zSbgagt459z-zLFkjKr8D6fef2I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1711547943</pqid></control><display><type>article</type><title>Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Laffont, P. ; Bousseau, A. ; Drettakis, G.</creator><creatorcontrib>Laffont, P. ; Bousseau, A. ; Drettakis, G.</creatorcontrib><description>Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this problem. In this paper, we propose a method to estimate intrinsic images from multiple views of an outdoor scene without the need for precise geometry and with a few manual steps to calibrate the input. We use multiview stereo to automatically reconstruct a 3D point cloud of the scene. Although this point cloud is sparse and incomplete, we show that it provides the necessary information to compute plausible sky and indirect illumination at each 3D point. We then introduce an optimization method to estimate sun visibility over the point cloud. This algorithm compensates for the lack of accurate geometry and allows the extraction of precise shadows in the final image. We finally propagate the information computed over the sparse point cloud to every pixel in the photograph using image-guided propagation. Our propagation not only separates reflectance from illumination, but also decomposes the illumination into a sun, sky, and indirect layer. This rich decomposition allows novel image manipulations as demonstrated by our results.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2012.112</identifier><identifier>PMID: 22508899</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer Science ; Geometry ; Graphics ; Image color analysis ; Image reconstruction ; image-guided propagation ; Intrinsic images ; Lighting ; Materials ; mean-shift algorithm ; multiview stereo ; Sun ; Three dimensional displays</subject><ispartof>IEEE transactions on visualization and computer graphics, 2013-02, Vol.19 (2), p.210-224</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3</citedby><cites>FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3</cites><orcidid>0000-0002-8003-9575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6185549$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22508899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00761121$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laffont, P.</creatorcontrib><creatorcontrib>Bousseau, A.</creatorcontrib><creatorcontrib>Drettakis, G.</creatorcontrib><title>Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this problem. In this paper, we propose a method to estimate intrinsic images from multiple views of an outdoor scene without the need for precise geometry and with a few manual steps to calibrate the input. We use multiview stereo to automatically reconstruct a 3D point cloud of the scene. Although this point cloud is sparse and incomplete, we show that it provides the necessary information to compute plausible sky and indirect illumination at each 3D point. We then introduce an optimization method to estimate sun visibility over the point cloud. This algorithm compensates for the lack of accurate geometry and allows the extraction of precise shadows in the final image. We finally propagate the information computed over the sparse point cloud to every pixel in the photograph using image-guided propagation. Our propagation not only separates reflectance from illumination, but also decomposes the illumination into a sun, sky, and indirect layer. This rich decomposition allows novel image manipulations as demonstrated by our results.</description><subject>Computer Science</subject><subject>Geometry</subject><subject>Graphics</subject><subject>Image color analysis</subject><subject>Image reconstruction</subject><subject>image-guided propagation</subject><subject>Intrinsic images</subject><subject>Lighting</subject><subject>Materials</subject><subject>mean-shift algorithm</subject><subject>multiview stereo</subject><subject>Sun</subject><subject>Three dimensional displays</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAYh4MoOj-OngTJUQ-dSZrP45i6DSaCzl1DlqYaaZvZtIr_vRmbO71fDz9eHgAuMRpijNTdYjmeDAnCJI3kAAywojhDDPHD1CMhMsIJPwGnMX4ihCmV6hicEMKQlEoNwPTF2w84a7rWN9FbOKvNu4P3zoZ6HaLvfGhgKOFz3xUhtPDVusZFWLahhk991fl15eDSu594Do5KU0V3satn4O3xYTGeZvPnyWw8mmeWMtJlkqafOMtXhDPJ1UpIRXApSmaFYQg7Y1VhpcilFUhYrqiyuWWW54UoqC1NfgZut7kfptLr1tem_dXBeD0dzfVmh5DgSQX-xom92bLrNnz1Lna69tG6qjKNC33UWGDMqFA0T2i2RW0bYmxduc_GSG9E641ovRGdRpL46110v6pdsaf_zSbgagt459z-zLFkjKr8D6fef2I</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Laffont, P.</creator><creator>Bousseau, A.</creator><creator>Drettakis, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8003-9575</orcidid></search><sort><creationdate>20130201</creationdate><title>Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views</title><author>Laffont, P. ; Bousseau, A. ; Drettakis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer Science</topic><topic>Geometry</topic><topic>Graphics</topic><topic>Image color analysis</topic><topic>Image reconstruction</topic><topic>image-guided propagation</topic><topic>Intrinsic images</topic><topic>Lighting</topic><topic>Materials</topic><topic>mean-shift algorithm</topic><topic>multiview stereo</topic><topic>Sun</topic><topic>Three dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laffont, P.</creatorcontrib><creatorcontrib>Bousseau, A.</creatorcontrib><creatorcontrib>Drettakis, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laffont, P.</au><au>Bousseau, A.</au><au>Drettakis, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>19</volume><issue>2</issue><spage>210</spage><epage>224</epage><pages>210-224</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this problem. In this paper, we propose a method to estimate intrinsic images from multiple views of an outdoor scene without the need for precise geometry and with a few manual steps to calibrate the input. We use multiview stereo to automatically reconstruct a 3D point cloud of the scene. Although this point cloud is sparse and incomplete, we show that it provides the necessary information to compute plausible sky and indirect illumination at each 3D point. We then introduce an optimization method to estimate sun visibility over the point cloud. This algorithm compensates for the lack of accurate geometry and allows the extraction of precise shadows in the final image. We finally propagate the information computed over the sparse point cloud to every pixel in the photograph using image-guided propagation. Our propagation not only separates reflectance from illumination, but also decomposes the illumination into a sun, sky, and indirect layer. This rich decomposition allows novel image manipulations as demonstrated by our results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22508899</pmid><doi>10.1109/TVCG.2012.112</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8003-9575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2013-02, Vol.19 (2), p.210-224
issn 1077-2626
1941-0506
language eng
recordid cdi_hal_primary_oai_HAL_hal_00761121v1
source IEEE Electronic Library (IEL) Journals
subjects Computer Science
Geometry
Graphics
Image color analysis
Image reconstruction
image-guided propagation
Intrinsic images
Lighting
Materials
mean-shift algorithm
multiview stereo
Sun
Three dimensional displays
title Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rich%20Intrinsic%20Image%20Decomposition%20of%20Outdoor%20Scenes%20from%20Multiple%20Views&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Laffont,%20P.&rft.date=2013-02-01&rft.volume=19&rft.issue=2&rft.spage=210&rft.epage=224&rft.pages=210-224&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2012.112&rft_dat=%3Cproquest_hal_p%3E1711547943%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1711547943&rft_id=info:pmid/22508899&rft_ieee_id=6185549&rfr_iscdi=true