Loading…
Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views
Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2013-02, Vol.19 (2), p.210-224 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3 |
container_end_page | 224 |
container_issue | 2 |
container_start_page | 210 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 19 |
creator | Laffont, P. Bousseau, A. Drettakis, G. |
description | Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this problem. In this paper, we propose a method to estimate intrinsic images from multiple views of an outdoor scene without the need for precise geometry and with a few manual steps to calibrate the input. We use multiview stereo to automatically reconstruct a 3D point cloud of the scene. Although this point cloud is sparse and incomplete, we show that it provides the necessary information to compute plausible sky and indirect illumination at each 3D point. We then introduce an optimization method to estimate sun visibility over the point cloud. This algorithm compensates for the lack of accurate geometry and allows the extraction of precise shadows in the final image. We finally propagate the information computed over the sparse point cloud to every pixel in the photograph using image-guided propagation. Our propagation not only separates reflectance from illumination, but also decomposes the illumination into a sun, sky, and indirect layer. This rich decomposition allows novel image manipulations as demonstrated by our results. |
doi_str_mv | 10.1109/TVCG.2012.112 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00761121v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6185549</ieee_id><sourcerecordid>1711547943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3</originalsourceid><addsrcrecordid>eNo9kM1LwzAYh4MoOj-OngTJUQ-dSZrP45i6DSaCzl1DlqYaaZvZtIr_vRmbO71fDz9eHgAuMRpijNTdYjmeDAnCJI3kAAywojhDDPHD1CMhMsIJPwGnMX4ihCmV6hicEMKQlEoNwPTF2w84a7rWN9FbOKvNu4P3zoZ6HaLvfGhgKOFz3xUhtPDVusZFWLahhk991fl15eDSu594Do5KU0V3satn4O3xYTGeZvPnyWw8mmeWMtJlkqafOMtXhDPJ1UpIRXApSmaFYQg7Y1VhpcilFUhYrqiyuWWW54UoqC1NfgZut7kfptLr1tem_dXBeD0dzfVmh5DgSQX-xom92bLrNnz1Lna69tG6qjKNC33UWGDMqFA0T2i2RW0bYmxduc_GSG9E641ovRGdRpL46110v6pdsaf_zSbgagt459z-zLFkjKr8D6fef2I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1711547943</pqid></control><display><type>article</type><title>Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Laffont, P. ; Bousseau, A. ; Drettakis, G.</creator><creatorcontrib>Laffont, P. ; Bousseau, A. ; Drettakis, G.</creatorcontrib><description>Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this problem. In this paper, we propose a method to estimate intrinsic images from multiple views of an outdoor scene without the need for precise geometry and with a few manual steps to calibrate the input. We use multiview stereo to automatically reconstruct a 3D point cloud of the scene. Although this point cloud is sparse and incomplete, we show that it provides the necessary information to compute plausible sky and indirect illumination at each 3D point. We then introduce an optimization method to estimate sun visibility over the point cloud. This algorithm compensates for the lack of accurate geometry and allows the extraction of precise shadows in the final image. We finally propagate the information computed over the sparse point cloud to every pixel in the photograph using image-guided propagation. Our propagation not only separates reflectance from illumination, but also decomposes the illumination into a sun, sky, and indirect layer. This rich decomposition allows novel image manipulations as demonstrated by our results.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2012.112</identifier><identifier>PMID: 22508899</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer Science ; Geometry ; Graphics ; Image color analysis ; Image reconstruction ; image-guided propagation ; Intrinsic images ; Lighting ; Materials ; mean-shift algorithm ; multiview stereo ; Sun ; Three dimensional displays</subject><ispartof>IEEE transactions on visualization and computer graphics, 2013-02, Vol.19 (2), p.210-224</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3</citedby><cites>FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3</cites><orcidid>0000-0002-8003-9575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6185549$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22508899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00761121$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laffont, P.</creatorcontrib><creatorcontrib>Bousseau, A.</creatorcontrib><creatorcontrib>Drettakis, G.</creatorcontrib><title>Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this problem. In this paper, we propose a method to estimate intrinsic images from multiple views of an outdoor scene without the need for precise geometry and with a few manual steps to calibrate the input. We use multiview stereo to automatically reconstruct a 3D point cloud of the scene. Although this point cloud is sparse and incomplete, we show that it provides the necessary information to compute plausible sky and indirect illumination at each 3D point. We then introduce an optimization method to estimate sun visibility over the point cloud. This algorithm compensates for the lack of accurate geometry and allows the extraction of precise shadows in the final image. We finally propagate the information computed over the sparse point cloud to every pixel in the photograph using image-guided propagation. Our propagation not only separates reflectance from illumination, but also decomposes the illumination into a sun, sky, and indirect layer. This rich decomposition allows novel image manipulations as demonstrated by our results.</description><subject>Computer Science</subject><subject>Geometry</subject><subject>Graphics</subject><subject>Image color analysis</subject><subject>Image reconstruction</subject><subject>image-guided propagation</subject><subject>Intrinsic images</subject><subject>Lighting</subject><subject>Materials</subject><subject>mean-shift algorithm</subject><subject>multiview stereo</subject><subject>Sun</subject><subject>Three dimensional displays</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAYh4MoOj-OngTJUQ-dSZrP45i6DSaCzl1DlqYaaZvZtIr_vRmbO71fDz9eHgAuMRpijNTdYjmeDAnCJI3kAAywojhDDPHD1CMhMsIJPwGnMX4ihCmV6hicEMKQlEoNwPTF2w84a7rWN9FbOKvNu4P3zoZ6HaLvfGhgKOFz3xUhtPDVusZFWLahhk991fl15eDSu594Do5KU0V3satn4O3xYTGeZvPnyWw8mmeWMtJlkqafOMtXhDPJ1UpIRXApSmaFYQg7Y1VhpcilFUhYrqiyuWWW54UoqC1NfgZut7kfptLr1tem_dXBeD0dzfVmh5DgSQX-xom92bLrNnz1Lna69tG6qjKNC33UWGDMqFA0T2i2RW0bYmxduc_GSG9E641ovRGdRpL46110v6pdsaf_zSbgagt459z-zLFkjKr8D6fef2I</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Laffont, P.</creator><creator>Bousseau, A.</creator><creator>Drettakis, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8003-9575</orcidid></search><sort><creationdate>20130201</creationdate><title>Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views</title><author>Laffont, P. ; Bousseau, A. ; Drettakis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer Science</topic><topic>Geometry</topic><topic>Graphics</topic><topic>Image color analysis</topic><topic>Image reconstruction</topic><topic>image-guided propagation</topic><topic>Intrinsic images</topic><topic>Lighting</topic><topic>Materials</topic><topic>mean-shift algorithm</topic><topic>multiview stereo</topic><topic>Sun</topic><topic>Three dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laffont, P.</creatorcontrib><creatorcontrib>Bousseau, A.</creatorcontrib><creatorcontrib>Drettakis, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laffont, P.</au><au>Bousseau, A.</au><au>Drettakis, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>19</volume><issue>2</issue><spage>210</spage><epage>224</epage><pages>210-224</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Intrinsic images aim at separating an image into its reflectance and illumination components to facilitate further analysis or manipulation. This separation is severely ill posed and the most successful methods rely on user indications or precise geometry to resolve the ambiguities inherent to this problem. In this paper, we propose a method to estimate intrinsic images from multiple views of an outdoor scene without the need for precise geometry and with a few manual steps to calibrate the input. We use multiview stereo to automatically reconstruct a 3D point cloud of the scene. Although this point cloud is sparse and incomplete, we show that it provides the necessary information to compute plausible sky and indirect illumination at each 3D point. We then introduce an optimization method to estimate sun visibility over the point cloud. This algorithm compensates for the lack of accurate geometry and allows the extraction of precise shadows in the final image. We finally propagate the information computed over the sparse point cloud to every pixel in the photograph using image-guided propagation. Our propagation not only separates reflectance from illumination, but also decomposes the illumination into a sun, sky, and indirect layer. This rich decomposition allows novel image manipulations as demonstrated by our results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22508899</pmid><doi>10.1109/TVCG.2012.112</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8003-9575</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2013-02, Vol.19 (2), p.210-224 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00761121v1 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Computer Science Geometry Graphics Image color analysis Image reconstruction image-guided propagation Intrinsic images Lighting Materials mean-shift algorithm multiview stereo Sun Three dimensional displays |
title | Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rich%20Intrinsic%20Image%20Decomposition%20of%20Outdoor%20Scenes%20from%20Multiple%20Views&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Laffont,%20P.&rft.date=2013-02-01&rft.volume=19&rft.issue=2&rft.spage=210&rft.epage=224&rft.pages=210-224&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2012.112&rft_dat=%3Cproquest_hal_p%3E1711547943%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-84077653b265869b78921f7f5c7a501eac9dc8738c707c6949c3c5c63d7d4cfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1711547943&rft_id=info:pmid/22508899&rft_ieee_id=6185549&rfr_iscdi=true |