Loading…
Multiple kernels noise for improved procedural texturing
Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an arbitrary en...
Saved in:
Published in: | The Visual computer 2012-06, Vol.28 (6-8), p.679-689 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93 |
container_end_page | 689 |
container_issue | 6-8 |
container_start_page | 679 |
container_title | The Visual computer |
container_volume | 28 |
creator | Gilet, G. Dischler, J-M. Ghazanfarpour, D. |
description | Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an
arbitrary
energy distribution in spectral domain. Multiple kernels noise is obtained by adaptively decomposing a user-defined power spectral density (PSD) into rectangular regions. These are then associated to kernel functions used to compute noise values by sparse convolution. We show how multiple kernels noise (1) increases the variety of noisy procedural textures that can be modeled and (2) helps creating structured procedural textures by automatic extraction of noise characteristics from user-supplied samples. |
doi_str_mv | 10.1007/s00371-012-0711-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00766595v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917892596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9giMTEYfE5tx2NVAUUqYoHZst0LpKRJsBME_x5HQTAxne703tO9j5BzYFfAmLqOjOUKKANOmQKg_IDMYJFzynMQh2TGQBWUq0Ifk5MYdyztaqFnpHgY6r7qaszeMDRYx6xpq4hZ2Yas2neh_cBtlobH7RBsnfX42Q-hal5OyVFp64hnP3NOnm9vnlZrunm8u18tN9TngvUUmRNOO8VFKcqtUoAOUOcWpOe-0M5rDVxpJcGjLbnTWjiU0krrVO6tzufkcsp9tbXpQrW34cu0tjLr5caMt9ReSqHFByTtxaRND78PGHuza4fQpPcM1wmA5kLLpIJJ5UMbY8DyNxaYGWGaCaZJMM0I0_Dk4ZMndmN5DH_J_5u-AWM1dko</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917892596</pqid></control><display><type>article</type><title>Multiple kernels noise for improved procedural texturing</title><source>Springer Nature</source><creator>Gilet, G. ; Dischler, J-M. ; Ghazanfarpour, D.</creator><creatorcontrib>Gilet, G. ; Dischler, J-M. ; Ghazanfarpour, D.</creatorcontrib><description>Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an
arbitrary
energy distribution in spectral domain. Multiple kernels noise is obtained by adaptively decomposing a user-defined power spectral density (PSD) into rectangular regions. These are then associated to kernel functions used to compute noise values by sparse convolution. We show how multiple kernels noise (1) increases the variety of noisy procedural textures that can be modeled and (2) helps creating structured procedural textures by automatic extraction of noise characteristics from user-supplied samples.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>EISSN: 1432-8726</identifier><identifier>DOI: 10.1007/s00371-012-0711-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Approximation ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Decomposition ; Energy distribution ; Fourier transforms ; Image Processing and Computer Vision ; Kernel functions ; Noise ; Original Article ; Power spectral density ; Signal processing ; Texturing</subject><ispartof>The Visual computer, 2012-06, Vol.28 (6-8), p.679-689</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag 2012.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93</citedby><cites>FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00766595$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilet, G.</creatorcontrib><creatorcontrib>Dischler, J-M.</creatorcontrib><creatorcontrib>Ghazanfarpour, D.</creatorcontrib><title>Multiple kernels noise for improved procedural texturing</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an
arbitrary
energy distribution in spectral domain. Multiple kernels noise is obtained by adaptively decomposing a user-defined power spectral density (PSD) into rectangular regions. These are then associated to kernel functions used to compute noise values by sparse convolution. We show how multiple kernels noise (1) increases the variety of noisy procedural textures that can be modeled and (2) helps creating structured procedural textures by automatic extraction of noise characteristics from user-supplied samples.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Energy distribution</subject><subject>Fourier transforms</subject><subject>Image Processing and Computer Vision</subject><subject>Kernel functions</subject><subject>Noise</subject><subject>Original Article</subject><subject>Power spectral density</subject><subject>Signal processing</subject><subject>Texturing</subject><issn>0178-2789</issn><issn>1432-2315</issn><issn>1432-8726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9giMTEYfE5tx2NVAUUqYoHZst0LpKRJsBME_x5HQTAxne703tO9j5BzYFfAmLqOjOUKKANOmQKg_IDMYJFzynMQh2TGQBWUq0Ifk5MYdyztaqFnpHgY6r7qaszeMDRYx6xpq4hZ2Yas2neh_cBtlobH7RBsnfX42Q-hal5OyVFp64hnP3NOnm9vnlZrunm8u18tN9TngvUUmRNOO8VFKcqtUoAOUOcWpOe-0M5rDVxpJcGjLbnTWjiU0krrVO6tzufkcsp9tbXpQrW34cu0tjLr5caMt9ReSqHFByTtxaRND78PGHuza4fQpPcM1wmA5kLLpIJJ5UMbY8DyNxaYGWGaCaZJMM0I0_Dk4ZMndmN5DH_J_5u-AWM1dko</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Gilet, G.</creator><creator>Dischler, J-M.</creator><creator>Ghazanfarpour, D.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope></search><sort><creationdate>20120601</creationdate><title>Multiple kernels noise for improved procedural texturing</title><author>Gilet, G. ; Dischler, J-M. ; Ghazanfarpour, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Energy distribution</topic><topic>Fourier transforms</topic><topic>Image Processing and Computer Vision</topic><topic>Kernel functions</topic><topic>Noise</topic><topic>Original Article</topic><topic>Power spectral density</topic><topic>Signal processing</topic><topic>Texturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilet, G.</creatorcontrib><creatorcontrib>Dischler, J-M.</creatorcontrib><creatorcontrib>Ghazanfarpour, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilet, G.</au><au>Dischler, J-M.</au><au>Ghazanfarpour, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple kernels noise for improved procedural texturing</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>28</volume><issue>6-8</issue><spage>679</spage><epage>689</epage><pages>679-689</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><eissn>1432-8726</eissn><abstract>Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an
arbitrary
energy distribution in spectral domain. Multiple kernels noise is obtained by adaptively decomposing a user-defined power spectral density (PSD) into rectangular regions. These are then associated to kernel functions used to compute noise values by sparse convolution. We show how multiple kernels noise (1) increases the variety of noisy procedural textures that can be modeled and (2) helps creating structured procedural textures by automatic extraction of noise characteristics from user-supplied samples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00371-012-0711-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-2789 |
ispartof | The Visual computer, 2012-06, Vol.28 (6-8), p.679-689 |
issn | 0178-2789 1432-2315 1432-8726 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00766595v1 |
source | Springer Nature |
subjects | Approximation Artificial Intelligence Computer Graphics Computer Science Decomposition Energy distribution Fourier transforms Image Processing and Computer Vision Kernel functions Noise Original Article Power spectral density Signal processing Texturing |
title | Multiple kernels noise for improved procedural texturing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20kernels%20noise%20for%20improved%20procedural%20texturing&rft.jtitle=The%20Visual%20computer&rft.au=Gilet,%20G.&rft.date=2012-06-01&rft.volume=28&rft.issue=6-8&rft.spage=679&rft.epage=689&rft.pages=679-689&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-012-0711-2&rft_dat=%3Cproquest_hal_p%3E2917892596%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917892596&rft_id=info:pmid/&rfr_iscdi=true |