Loading…

Multiple kernels noise for improved procedural texturing

Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an arbitrary en...

Full description

Saved in:
Bibliographic Details
Published in:The Visual computer 2012-06, Vol.28 (6-8), p.679-689
Main Authors: Gilet, G., Dischler, J-M., Ghazanfarpour, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93
cites cdi_FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93
container_end_page 689
container_issue 6-8
container_start_page 679
container_title The Visual computer
container_volume 28
creator Gilet, G.
Dischler, J-M.
Ghazanfarpour, D.
description Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an arbitrary energy distribution in spectral domain. Multiple kernels noise is obtained by adaptively decomposing a user-defined power spectral density (PSD) into rectangular regions. These are then associated to kernel functions used to compute noise values by sparse convolution. We show how multiple kernels noise (1) increases the variety of noisy procedural textures that can be modeled and (2) helps creating structured procedural textures by automatic extraction of noise characteristics from user-supplied samples.
doi_str_mv 10.1007/s00371-012-0711-2
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00766595v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917892596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9giMTEYfE5tx2NVAUUqYoHZst0LpKRJsBME_x5HQTAxne703tO9j5BzYFfAmLqOjOUKKANOmQKg_IDMYJFzynMQh2TGQBWUq0Ifk5MYdyztaqFnpHgY6r7qaszeMDRYx6xpq4hZ2Yas2neh_cBtlobH7RBsnfX42Q-hal5OyVFp64hnP3NOnm9vnlZrunm8u18tN9TngvUUmRNOO8VFKcqtUoAOUOcWpOe-0M5rDVxpJcGjLbnTWjiU0krrVO6tzufkcsp9tbXpQrW34cu0tjLr5caMt9ReSqHFByTtxaRND78PGHuza4fQpPcM1wmA5kLLpIJJ5UMbY8DyNxaYGWGaCaZJMM0I0_Dk4ZMndmN5DH_J_5u-AWM1dko</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917892596</pqid></control><display><type>article</type><title>Multiple kernels noise for improved procedural texturing</title><source>Springer Nature</source><creator>Gilet, G. ; Dischler, J-M. ; Ghazanfarpour, D.</creator><creatorcontrib>Gilet, G. ; Dischler, J-M. ; Ghazanfarpour, D.</creatorcontrib><description>Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an arbitrary energy distribution in spectral domain. Multiple kernels noise is obtained by adaptively decomposing a user-defined power spectral density (PSD) into rectangular regions. These are then associated to kernel functions used to compute noise values by sparse convolution. We show how multiple kernels noise (1) increases the variety of noisy procedural textures that can be modeled and (2) helps creating structured procedural textures by automatic extraction of noise characteristics from user-supplied samples.</description><identifier>ISSN: 0178-2789</identifier><identifier>EISSN: 1432-2315</identifier><identifier>EISSN: 1432-8726</identifier><identifier>DOI: 10.1007/s00371-012-0711-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Approximation ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Decomposition ; Energy distribution ; Fourier transforms ; Image Processing and Computer Vision ; Kernel functions ; Noise ; Original Article ; Power spectral density ; Signal processing ; Texturing</subject><ispartof>The Visual computer, 2012-06, Vol.28 (6-8), p.679-689</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag 2012.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93</citedby><cites>FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00766595$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilet, G.</creatorcontrib><creatorcontrib>Dischler, J-M.</creatorcontrib><creatorcontrib>Ghazanfarpour, D.</creatorcontrib><title>Multiple kernels noise for improved procedural texturing</title><title>The Visual computer</title><addtitle>Vis Comput</addtitle><description>Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an arbitrary energy distribution in spectral domain. Multiple kernels noise is obtained by adaptively decomposing a user-defined power spectral density (PSD) into rectangular regions. These are then associated to kernel functions used to compute noise values by sparse convolution. We show how multiple kernels noise (1) increases the variety of noisy procedural textures that can be modeled and (2) helps creating structured procedural textures by automatic extraction of noise characteristics from user-supplied samples.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Energy distribution</subject><subject>Fourier transforms</subject><subject>Image Processing and Computer Vision</subject><subject>Kernel functions</subject><subject>Noise</subject><subject>Original Article</subject><subject>Power spectral density</subject><subject>Signal processing</subject><subject>Texturing</subject><issn>0178-2789</issn><issn>1432-2315</issn><issn>1432-8726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9giMTEYfE5tx2NVAUUqYoHZst0LpKRJsBME_x5HQTAxne703tO9j5BzYFfAmLqOjOUKKANOmQKg_IDMYJFzynMQh2TGQBWUq0Ifk5MYdyztaqFnpHgY6r7qaszeMDRYx6xpq4hZ2Yas2neh_cBtlobH7RBsnfX42Q-hal5OyVFp64hnP3NOnm9vnlZrunm8u18tN9TngvUUmRNOO8VFKcqtUoAOUOcWpOe-0M5rDVxpJcGjLbnTWjiU0krrVO6tzufkcsp9tbXpQrW34cu0tjLr5caMt9ReSqHFByTtxaRND78PGHuza4fQpPcM1wmA5kLLpIJJ5UMbY8DyNxaYGWGaCaZJMM0I0_Dk4ZMndmN5DH_J_5u-AWM1dko</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Gilet, G.</creator><creator>Dischler, J-M.</creator><creator>Ghazanfarpour, D.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope></search><sort><creationdate>20120601</creationdate><title>Multiple kernels noise for improved procedural texturing</title><author>Gilet, G. ; Dischler, J-M. ; Ghazanfarpour, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Energy distribution</topic><topic>Fourier transforms</topic><topic>Image Processing and Computer Vision</topic><topic>Kernel functions</topic><topic>Noise</topic><topic>Original Article</topic><topic>Power spectral density</topic><topic>Signal processing</topic><topic>Texturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilet, G.</creatorcontrib><creatorcontrib>Dischler, J-M.</creatorcontrib><creatorcontrib>Ghazanfarpour, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Visual computer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilet, G.</au><au>Dischler, J-M.</au><au>Ghazanfarpour, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple kernels noise for improved procedural texturing</atitle><jtitle>The Visual computer</jtitle><stitle>Vis Comput</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>28</volume><issue>6-8</issue><spage>679</spage><epage>689</epage><pages>679-689</pages><issn>0178-2789</issn><eissn>1432-2315</eissn><eissn>1432-8726</eissn><abstract>Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an arbitrary energy distribution in spectral domain. Multiple kernels noise is obtained by adaptively decomposing a user-defined power spectral density (PSD) into rectangular regions. These are then associated to kernel functions used to compute noise values by sparse convolution. We show how multiple kernels noise (1) increases the variety of noisy procedural textures that can be modeled and (2) helps creating structured procedural textures by automatic extraction of noise characteristics from user-supplied samples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00371-012-0711-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-2789
ispartof The Visual computer, 2012-06, Vol.28 (6-8), p.679-689
issn 0178-2789
1432-2315
1432-8726
language eng
recordid cdi_hal_primary_oai_HAL_hal_00766595v1
source Springer Nature
subjects Approximation
Artificial Intelligence
Computer Graphics
Computer Science
Decomposition
Energy distribution
Fourier transforms
Image Processing and Computer Vision
Kernel functions
Noise
Original Article
Power spectral density
Signal processing
Texturing
title Multiple kernels noise for improved procedural texturing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20kernels%20noise%20for%20improved%20procedural%20texturing&rft.jtitle=The%20Visual%20computer&rft.au=Gilet,%20G.&rft.date=2012-06-01&rft.volume=28&rft.issue=6-8&rft.spage=679&rft.epage=689&rft.pages=679-689&rft.issn=0178-2789&rft.eissn=1432-2315&rft_id=info:doi/10.1007/s00371-012-0711-2&rft_dat=%3Cproquest_hal_p%3E2917892596%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-e0b5b9b725f5fd771eb1e93a16c2c89bc991279761ceaf2b995be66a6ab73ca93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917892596&rft_id=info:pmid/&rfr_iscdi=true