Loading…

POD-spectral decomposition for fluid flow analysis and model reduction

We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and computational fluid dynamics 2013-11, Vol.27 (6), p.787-815
Main Authors: Cammilleri, A., Gueniat, F., Carlier, J., Pastur, L., Memin, E., Lusseyran, F., Artana, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3
cites cdi_FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3
container_end_page 815
container_issue 6
container_start_page 787
container_title Theoretical and computational fluid dynamics
container_volume 27
creator Cammilleri, A.
Gueniat, F.
Carlier, J.
Pastur, L.
Memin, E.
Lusseyran, F.
Artana, G.
description We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex behavior within quasiperiodic orbits in the phase space. The technique is appropriate to achieve efficient reduced order models even in complex cases for which the flow description requires a discretization with a fine spatial and temporal resolution. The proposed analysis enables to decompose complex flow dynamics into modes oscillating at a single frequency. These modes are associated with different energy levels and spatial structures. The approach is illustrated using time-resolved PIV data of a cylinder wake flow with associated Reynolds number equal to 3,900.
doi_str_mv 10.1007/s00162-013-0293-2
format article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00793380v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A349905166</galeid><sourcerecordid>A349905166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhcOgMG3rD3BX4EYXGW_elWUzOg9oGBe6DulUMmZIVdqkS5l_b4oaBhFEAjfh8p2b5ByE3hK4IADqYwUgkmIgDAPVDNMztCGcUUypgBdoA5oJzLXk5-hVrQ8AwITsN-jqy90nXI_enYpN3eBdHo-5xlPMUxdy6UKa49Bq_tXZyabHGms7DN2YB5-64ofZLexr9DLYVP2bp32Lvl19_np5g_d317eXuz12XPcnrJUmVBLGvdCyB3kAZ0EMTglKlWCt8qAk0AORvCc9WCv0AXrJOOFKh8C26MM697tN5ljiaMujyTaam93eLL3mhWash5-kse9X9ljyj9nXkxljdT4lO_k8V0OUAsZ71qz4L8olF0JBc3SL3v2FPuS5NGsWihPJJFe0URcrdW-TN3EKufnr2hr8GF2efIitv2NcaxBEyiYgq8CVXGvx4fl3BMySsFkTNi1hsyRslkvoqqmNne59-eMp_xT9BqNDo2Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441636472</pqid></control><display><type>article</type><title>POD-spectral decomposition for fluid flow analysis and model reduction</title><source>Springer Nature</source><creator>Cammilleri, A. ; Gueniat, F. ; Carlier, J. ; Pastur, L. ; Memin, E. ; Lusseyran, F. ; Artana, G.</creator><creatorcontrib>Cammilleri, A. ; Gueniat, F. ; Carlier, J. ; Pastur, L. ; Memin, E. ; Lusseyran, F. ; Artana, G.</creatorcontrib><description>We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex behavior within quasiperiodic orbits in the phase space. The technique is appropriate to achieve efficient reduced order models even in complex cases for which the flow description requires a discretization with a fine spatial and temporal resolution. The proposed analysis enables to decompose complex flow dynamics into modes oscillating at a single frequency. These modes are associated with different energy levels and spatial structures. The approach is illustrated using time-resolved PIV data of a cylinder wake flow with associated Reynolds number equal to 3,900.</description><identifier>ISSN: 0935-4964</identifier><identifier>EISSN: 1432-2250</identifier><identifier>DOI: 10.1007/s00162-013-0293-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Classical and Continuum Physics ; Computational fluid dynamics ; Computational Science and Engineering ; Cylinders ; Decomposition ; Decomposition (Mathematics) ; Discretization ; Dynamical systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Sciences ; Fluid dynamics ; Fluid flow ; Mathematical physics ; Original Article ; Reactive fluid environment ; Reduced order models ; Simulation</subject><ispartof>Theoretical and computational fluid dynamics, 2013-11, Vol.27 (6), p.787-815</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3</citedby><cites>FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3</cites><orcidid>0000-0003-0038-5898 ; 0000-0001-8606-9321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00793380$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cammilleri, A.</creatorcontrib><creatorcontrib>Gueniat, F.</creatorcontrib><creatorcontrib>Carlier, J.</creatorcontrib><creatorcontrib>Pastur, L.</creatorcontrib><creatorcontrib>Memin, E.</creatorcontrib><creatorcontrib>Lusseyran, F.</creatorcontrib><creatorcontrib>Artana, G.</creatorcontrib><title>POD-spectral decomposition for fluid flow analysis and model reduction</title><title>Theoretical and computational fluid dynamics</title><addtitle>Theor. Comput. Fluid Dyn</addtitle><description>We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex behavior within quasiperiodic orbits in the phase space. The technique is appropriate to achieve efficient reduced order models even in complex cases for which the flow description requires a discretization with a fine spatial and temporal resolution. The proposed analysis enables to decompose complex flow dynamics into modes oscillating at a single frequency. These modes are associated with different energy levels and spatial structures. The approach is illustrated using time-resolved PIV data of a cylinder wake flow with associated Reynolds number equal to 3,900.</description><subject>Algorithms</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computational Science and Engineering</subject><subject>Cylinders</subject><subject>Decomposition</subject><subject>Decomposition (Mathematics)</subject><subject>Discretization</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Sciences</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical physics</subject><subject>Original Article</subject><subject>Reactive fluid environment</subject><subject>Reduced order models</subject><subject>Simulation</subject><issn>0935-4964</issn><issn>1432-2250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEUhcOgMG3rD3BX4EYXGW_elWUzOg9oGBe6DulUMmZIVdqkS5l_b4oaBhFEAjfh8p2b5ByE3hK4IADqYwUgkmIgDAPVDNMztCGcUUypgBdoA5oJzLXk5-hVrQ8AwITsN-jqy90nXI_enYpN3eBdHo-5xlPMUxdy6UKa49Bq_tXZyabHGms7DN2YB5-64ofZLexr9DLYVP2bp32Lvl19_np5g_d317eXuz12XPcnrJUmVBLGvdCyB3kAZ0EMTglKlWCt8qAk0AORvCc9WCv0AXrJOOFKh8C26MM697tN5ljiaMujyTaam93eLL3mhWash5-kse9X9ljyj9nXkxljdT4lO_k8V0OUAsZ71qz4L8olF0JBc3SL3v2FPuS5NGsWihPJJFe0URcrdW-TN3EKufnr2hr8GF2efIitv2NcaxBEyiYgq8CVXGvx4fl3BMySsFkTNi1hsyRslkvoqqmNne59-eMp_xT9BqNDo2Y</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Cammilleri, A.</creator><creator>Gueniat, F.</creator><creator>Carlier, J.</creator><creator>Pastur, L.</creator><creator>Memin, E.</creator><creator>Lusseyran, F.</creator><creator>Artana, G.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7UA</scope><scope>C1K</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0038-5898</orcidid><orcidid>https://orcid.org/0000-0001-8606-9321</orcidid></search><sort><creationdate>20131101</creationdate><title>POD-spectral decomposition for fluid flow analysis and model reduction</title><author>Cammilleri, A. ; Gueniat, F. ; Carlier, J. ; Pastur, L. ; Memin, E. ; Lusseyran, F. ; Artana, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computational Science and Engineering</topic><topic>Cylinders</topic><topic>Decomposition</topic><topic>Decomposition (Mathematics)</topic><topic>Discretization</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Sciences</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical physics</topic><topic>Original Article</topic><topic>Reactive fluid environment</topic><topic>Reduced order models</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cammilleri, A.</creatorcontrib><creatorcontrib>Gueniat, F.</creatorcontrib><creatorcontrib>Carlier, J.</creatorcontrib><creatorcontrib>Pastur, L.</creatorcontrib><creatorcontrib>Memin, E.</creatorcontrib><creatorcontrib>Lusseyran, F.</creatorcontrib><creatorcontrib>Artana, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical and computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cammilleri, A.</au><au>Gueniat, F.</au><au>Carlier, J.</au><au>Pastur, L.</au><au>Memin, E.</au><au>Lusseyran, F.</au><au>Artana, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POD-spectral decomposition for fluid flow analysis and model reduction</atitle><jtitle>Theoretical and computational fluid dynamics</jtitle><stitle>Theor. Comput. Fluid Dyn</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>27</volume><issue>6</issue><spage>787</spage><epage>815</epage><pages>787-815</pages><issn>0935-4964</issn><eissn>1432-2250</eissn><abstract>We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex behavior within quasiperiodic orbits in the phase space. The technique is appropriate to achieve efficient reduced order models even in complex cases for which the flow description requires a discretization with a fine spatial and temporal resolution. The proposed analysis enables to decompose complex flow dynamics into modes oscillating at a single frequency. These modes are associated with different energy levels and spatial structures. The approach is illustrated using time-resolved PIV data of a cylinder wake flow with associated Reynolds number equal to 3,900.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00162-013-0293-2</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-0038-5898</orcidid><orcidid>https://orcid.org/0000-0001-8606-9321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-4964
ispartof Theoretical and computational fluid dynamics, 2013-11, Vol.27 (6), p.787-815
issn 0935-4964
1432-2250
language eng
recordid cdi_hal_primary_oai_HAL_hal_00793380v1
source Springer Nature
subjects Algorithms
Classical and Continuum Physics
Computational fluid dynamics
Computational Science and Engineering
Cylinders
Decomposition
Decomposition (Mathematics)
Discretization
Dynamical systems
Engineering
Engineering Fluid Dynamics
Engineering Sciences
Fluid dynamics
Fluid flow
Mathematical physics
Original Article
Reactive fluid environment
Reduced order models
Simulation
title POD-spectral decomposition for fluid flow analysis and model reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POD-spectral%20decomposition%20for%20fluid%20flow%20analysis%20and%20model%20reduction&rft.jtitle=Theoretical%20and%20computational%20fluid%20dynamics&rft.au=Cammilleri,%20A.&rft.date=2013-11-01&rft.volume=27&rft.issue=6&rft.spage=787&rft.epage=815&rft.pages=787-815&rft.issn=0935-4964&rft.eissn=1432-2250&rft_id=info:doi/10.1007/s00162-013-0293-2&rft_dat=%3Cgale_hal_p%3EA349905166%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1441636472&rft_id=info:pmid/&rft_galeid=A349905166&rfr_iscdi=true