Loading…
POD-spectral decomposition for fluid flow analysis and model reduction
We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex...
Saved in:
Published in: | Theoretical and computational fluid dynamics 2013-11, Vol.27 (6), p.787-815 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3 |
container_end_page | 815 |
container_issue | 6 |
container_start_page | 787 |
container_title | Theoretical and computational fluid dynamics |
container_volume | 27 |
creator | Cammilleri, A. Gueniat, F. Carlier, J. Pastur, L. Memin, E. Lusseyran, F. Artana, G. |
description | We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex behavior within quasiperiodic orbits in the phase space. The technique is appropriate to achieve efficient reduced order models even in complex cases for which the flow description requires a discretization with a fine spatial and temporal resolution. The proposed analysis enables to decompose complex flow dynamics into modes oscillating at a single frequency. These modes are associated with different energy levels and spatial structures. The approach is illustrated using time-resolved PIV data of a cylinder wake flow with associated Reynolds number equal to 3,900. |
doi_str_mv | 10.1007/s00162-013-0293-2 |
format | article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00793380v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A349905166</galeid><sourcerecordid>A349905166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhcOgMG3rD3BX4EYXGW_elWUzOg9oGBe6DulUMmZIVdqkS5l_b4oaBhFEAjfh8p2b5ByE3hK4IADqYwUgkmIgDAPVDNMztCGcUUypgBdoA5oJzLXk5-hVrQ8AwITsN-jqy90nXI_enYpN3eBdHo-5xlPMUxdy6UKa49Bq_tXZyabHGms7DN2YB5-64ofZLexr9DLYVP2bp32Lvl19_np5g_d317eXuz12XPcnrJUmVBLGvdCyB3kAZ0EMTglKlWCt8qAk0AORvCc9WCv0AXrJOOFKh8C26MM697tN5ljiaMujyTaam93eLL3mhWash5-kse9X9ljyj9nXkxljdT4lO_k8V0OUAsZ71qz4L8olF0JBc3SL3v2FPuS5NGsWihPJJFe0URcrdW-TN3EKufnr2hr8GF2efIitv2NcaxBEyiYgq8CVXGvx4fl3BMySsFkTNi1hsyRslkvoqqmNne59-eMp_xT9BqNDo2Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441636472</pqid></control><display><type>article</type><title>POD-spectral decomposition for fluid flow analysis and model reduction</title><source>Springer Nature</source><creator>Cammilleri, A. ; Gueniat, F. ; Carlier, J. ; Pastur, L. ; Memin, E. ; Lusseyran, F. ; Artana, G.</creator><creatorcontrib>Cammilleri, A. ; Gueniat, F. ; Carlier, J. ; Pastur, L. ; Memin, E. ; Lusseyran, F. ; Artana, G.</creatorcontrib><description>We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex behavior within quasiperiodic orbits in the phase space. The technique is appropriate to achieve efficient reduced order models even in complex cases for which the flow description requires a discretization with a fine spatial and temporal resolution. The proposed analysis enables to decompose complex flow dynamics into modes oscillating at a single frequency. These modes are associated with different energy levels and spatial structures. The approach is illustrated using time-resolved PIV data of a cylinder wake flow with associated Reynolds number equal to 3,900.</description><identifier>ISSN: 0935-4964</identifier><identifier>EISSN: 1432-2250</identifier><identifier>DOI: 10.1007/s00162-013-0293-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Classical and Continuum Physics ; Computational fluid dynamics ; Computational Science and Engineering ; Cylinders ; Decomposition ; Decomposition (Mathematics) ; Discretization ; Dynamical systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Sciences ; Fluid dynamics ; Fluid flow ; Mathematical physics ; Original Article ; Reactive fluid environment ; Reduced order models ; Simulation</subject><ispartof>Theoretical and computational fluid dynamics, 2013-11, Vol.27 (6), p.787-815</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3</citedby><cites>FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3</cites><orcidid>0000-0003-0038-5898 ; 0000-0001-8606-9321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00793380$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cammilleri, A.</creatorcontrib><creatorcontrib>Gueniat, F.</creatorcontrib><creatorcontrib>Carlier, J.</creatorcontrib><creatorcontrib>Pastur, L.</creatorcontrib><creatorcontrib>Memin, E.</creatorcontrib><creatorcontrib>Lusseyran, F.</creatorcontrib><creatorcontrib>Artana, G.</creatorcontrib><title>POD-spectral decomposition for fluid flow analysis and model reduction</title><title>Theoretical and computational fluid dynamics</title><addtitle>Theor. Comput. Fluid Dyn</addtitle><description>We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex behavior within quasiperiodic orbits in the phase space. The technique is appropriate to achieve efficient reduced order models even in complex cases for which the flow description requires a discretization with a fine spatial and temporal resolution. The proposed analysis enables to decompose complex flow dynamics into modes oscillating at a single frequency. These modes are associated with different energy levels and spatial structures. The approach is illustrated using time-resolved PIV data of a cylinder wake flow with associated Reynolds number equal to 3,900.</description><subject>Algorithms</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computational Science and Engineering</subject><subject>Cylinders</subject><subject>Decomposition</subject><subject>Decomposition (Mathematics)</subject><subject>Discretization</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Sciences</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical physics</subject><subject>Original Article</subject><subject>Reactive fluid environment</subject><subject>Reduced order models</subject><subject>Simulation</subject><issn>0935-4964</issn><issn>1432-2250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEUhcOgMG3rD3BX4EYXGW_elWUzOg9oGBe6DulUMmZIVdqkS5l_b4oaBhFEAjfh8p2b5ByE3hK4IADqYwUgkmIgDAPVDNMztCGcUUypgBdoA5oJzLXk5-hVrQ8AwITsN-jqy90nXI_enYpN3eBdHo-5xlPMUxdy6UKa49Bq_tXZyabHGms7DN2YB5-64ofZLexr9DLYVP2bp32Lvl19_np5g_d317eXuz12XPcnrJUmVBLGvdCyB3kAZ0EMTglKlWCt8qAk0AORvCc9WCv0AXrJOOFKh8C26MM697tN5ljiaMujyTaam93eLL3mhWash5-kse9X9ljyj9nXkxljdT4lO_k8V0OUAsZ71qz4L8olF0JBc3SL3v2FPuS5NGsWihPJJFe0URcrdW-TN3EKufnr2hr8GF2efIitv2NcaxBEyiYgq8CVXGvx4fl3BMySsFkTNi1hsyRslkvoqqmNne59-eMp_xT9BqNDo2Y</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Cammilleri, A.</creator><creator>Gueniat, F.</creator><creator>Carlier, J.</creator><creator>Pastur, L.</creator><creator>Memin, E.</creator><creator>Lusseyran, F.</creator><creator>Artana, G.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7UA</scope><scope>C1K</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0038-5898</orcidid><orcidid>https://orcid.org/0000-0001-8606-9321</orcidid></search><sort><creationdate>20131101</creationdate><title>POD-spectral decomposition for fluid flow analysis and model reduction</title><author>Cammilleri, A. ; Gueniat, F. ; Carlier, J. ; Pastur, L. ; Memin, E. ; Lusseyran, F. ; Artana, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computational Science and Engineering</topic><topic>Cylinders</topic><topic>Decomposition</topic><topic>Decomposition (Mathematics)</topic><topic>Discretization</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Sciences</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical physics</topic><topic>Original Article</topic><topic>Reactive fluid environment</topic><topic>Reduced order models</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cammilleri, A.</creatorcontrib><creatorcontrib>Gueniat, F.</creatorcontrib><creatorcontrib>Carlier, J.</creatorcontrib><creatorcontrib>Pastur, L.</creatorcontrib><creatorcontrib>Memin, E.</creatorcontrib><creatorcontrib>Lusseyran, F.</creatorcontrib><creatorcontrib>Artana, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical and computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cammilleri, A.</au><au>Gueniat, F.</au><au>Carlier, J.</au><au>Pastur, L.</au><au>Memin, E.</au><au>Lusseyran, F.</au><au>Artana, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POD-spectral decomposition for fluid flow analysis and model reduction</atitle><jtitle>Theoretical and computational fluid dynamics</jtitle><stitle>Theor. Comput. Fluid Dyn</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>27</volume><issue>6</issue><spage>787</spage><epage>815</epage><pages>787-815</pages><issn>0935-4964</issn><eissn>1432-2250</eissn><abstract>We propose an algorithm that combines proper orthogonal decomposition with a spectral method to analyze and extract reduced order models of flows from time data series of velocity fields. The flows considered in this study are assumed to be driven by non-linear dynamical systems exhibiting a complex behavior within quasiperiodic orbits in the phase space. The technique is appropriate to achieve efficient reduced order models even in complex cases for which the flow description requires a discretization with a fine spatial and temporal resolution. The proposed analysis enables to decompose complex flow dynamics into modes oscillating at a single frequency. These modes are associated with different energy levels and spatial structures. The approach is illustrated using time-resolved PIV data of a cylinder wake flow with associated Reynolds number equal to 3,900.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00162-013-0293-2</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-0038-5898</orcidid><orcidid>https://orcid.org/0000-0001-8606-9321</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-4964 |
ispartof | Theoretical and computational fluid dynamics, 2013-11, Vol.27 (6), p.787-815 |
issn | 0935-4964 1432-2250 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00793380v1 |
source | Springer Nature |
subjects | Algorithms Classical and Continuum Physics Computational fluid dynamics Computational Science and Engineering Cylinders Decomposition Decomposition (Mathematics) Discretization Dynamical systems Engineering Engineering Fluid Dynamics Engineering Sciences Fluid dynamics Fluid flow Mathematical physics Original Article Reactive fluid environment Reduced order models Simulation |
title | POD-spectral decomposition for fluid flow analysis and model reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POD-spectral%20decomposition%20for%20fluid%20flow%20analysis%20and%20model%20reduction&rft.jtitle=Theoretical%20and%20computational%20fluid%20dynamics&rft.au=Cammilleri,%20A.&rft.date=2013-11-01&rft.volume=27&rft.issue=6&rft.spage=787&rft.epage=815&rft.pages=787-815&rft.issn=0935-4964&rft.eissn=1432-2250&rft_id=info:doi/10.1007/s00162-013-0293-2&rft_dat=%3Cgale_hal_p%3EA349905166%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-979126134e596806b0ca05dc75227535224f7602b1648180aa59b086341479ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1441636472&rft_id=info:pmid/&rft_galeid=A349905166&rfr_iscdi=true |