Loading…
GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application
This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with thes...
Saved in:
Published in: | Journal of crystal growth 2008-11, Vol.310 (23), p.5232-5236 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263 |
container_end_page | 5236 |
container_issue | 23 |
container_start_page | 5232 |
container_title | Journal of crystal growth |
container_volume | 310 |
creator | di Forte Poisson, M.-A. Magis, M. Tordjman, M. Di Persio, J. Langer, R. Toth, L. Pecz, B. Guziewicz, M. Thorpe, J. Aubry, R. Morvan, E. Sarazin, N. Gaquière, C. Meneghesso, G. Hoel, V. Jacquet, J.-C. Delage, S. |
description | This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with these structures.
Some critical growth parameters, such as growth temperature, V/III ratio and nucleation layer at the GaN/SiC interface, have been investigated, and their impact on physical properties of these heterostructures is studied. Such optimisation of the growth conditions has led to GaAlN/GaN HEMT heterostructures which are successfully compared in terms of material quality to the standard HEMT heterostructures grown on bulk SiC substrates.
Their electrical characteristics, such as sheet carrier density (
N
s), mobility (
μ), pinch-off voltage (
V
p) or sheet resistance (
R
s), are very similar to those obtained on bulk SiC substrates and their crystallographic properties, assessed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM), seem to be in good agreement with the above-mentioned electrical characteristics.
First devices with 0.5
μm gate length, made on these specific composite wafers, exhibit very good microwave performances, with output power of 5
W/mm at 10
GHz, similar to those obtained on bulk SiC substrates, showing the promising capability of SiCopSiC composite substrates. |
doi_str_mv | 10.1016/j.jcrysgro.2008.08.035 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00800708v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024808007355</els_id><sourcerecordid>35387429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVoIdttXiH4kkIP3oxk2bJvXZZ0N7BJD01OOQhZHidavJYryQl5-8o4yTUwzMDwzT_wEXJOYUWBFpeH1UG7V__o7IoBlKupsvyELGgpsjQHYF_IInaWAuPlKfnm_QEgXlJYkIetWne3l1t1m-yubu6SJwzorA9u1GF06JMY-9Intk_-mo0dYku0PQ7Wm4CJH-tIqhCx1ro5QA1DZ7QKxvbfyddWdR7P3uaS3P--utvs0v2f7fVmvU81BxHSthGgKeMVrZuC56zi0IhaYyvKIm9rwUssqEJa52XBCs5ZpmidiaoRWkybbEl-zrlPqpODM0flXqVVRu7WezntohUAAeUzjeyPmR2c_TeiD_JovMauUz3a0cssz0rBWRXBYgZ11OEdth_JFOTkXR7ku3c5eZdTxfMluXj7oLxWXetUr43_uGYUGK0YRO7XzGFU82zQSa8N9hob41AH2Vjz2av_A1-a8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35387429</pqid></control><display><type>article</type><title>GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application</title><source>Elsevier</source><creator>di Forte Poisson, M.-A. ; Magis, M. ; Tordjman, M. ; Di Persio, J. ; Langer, R. ; Toth, L. ; Pecz, B. ; Guziewicz, M. ; Thorpe, J. ; Aubry, R. ; Morvan, E. ; Sarazin, N. ; Gaquière, C. ; Meneghesso, G. ; Hoel, V. ; Jacquet, J.-C. ; Delage, S.</creator><creatorcontrib>di Forte Poisson, M.-A. ; Magis, M. ; Tordjman, M. ; Di Persio, J. ; Langer, R. ; Toth, L. ; Pecz, B. ; Guziewicz, M. ; Thorpe, J. ; Aubry, R. ; Morvan, E. ; Sarazin, N. ; Gaquière, C. ; Meneghesso, G. ; Hoel, V. ; Jacquet, J.-C. ; Delage, S.</creatorcontrib><description>This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with these structures.
Some critical growth parameters, such as growth temperature, V/III ratio and nucleation layer at the GaN/SiC interface, have been investigated, and their impact on physical properties of these heterostructures is studied. Such optimisation of the growth conditions has led to GaAlN/GaN HEMT heterostructures which are successfully compared in terms of material quality to the standard HEMT heterostructures grown on bulk SiC substrates.
Their electrical characteristics, such as sheet carrier density (
N
s), mobility (
μ), pinch-off voltage (
V
p) or sheet resistance (
R
s), are very similar to those obtained on bulk SiC substrates and their crystallographic properties, assessed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM), seem to be in good agreement with the above-mentioned electrical characteristics.
First devices with 0.5
μm gate length, made on these specific composite wafers, exhibit very good microwave performances, with output power of 5
W/mm at 10
GHz, similar to those obtained on bulk SiC substrates, showing the promising capability of SiCopSiC composite substrates.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2008.08.035</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Defects ; A3. Metalorganic vapour phase epitaxy ; Applied sciences ; B1. Nitrides ; B2. Semiconducting III–V materials ; B3. Field effect transistors ; B3. Heterojunction semiconductor devices ; B3. High electron mobility transistors ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Engineering Sciences ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Other materials ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Transistors</subject><ispartof>Journal of crystal growth, 2008-11, Vol.310 (23), p.5232-5236</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263</citedby><cites>FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263</cites><orcidid>0000-0002-6715-4827 ; 0000-0003-3082-2489 ; 0000-0003-4652-4742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21021920$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00800708$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>di Forte Poisson, M.-A.</creatorcontrib><creatorcontrib>Magis, M.</creatorcontrib><creatorcontrib>Tordjman, M.</creatorcontrib><creatorcontrib>Di Persio, J.</creatorcontrib><creatorcontrib>Langer, R.</creatorcontrib><creatorcontrib>Toth, L.</creatorcontrib><creatorcontrib>Pecz, B.</creatorcontrib><creatorcontrib>Guziewicz, M.</creatorcontrib><creatorcontrib>Thorpe, J.</creatorcontrib><creatorcontrib>Aubry, R.</creatorcontrib><creatorcontrib>Morvan, E.</creatorcontrib><creatorcontrib>Sarazin, N.</creatorcontrib><creatorcontrib>Gaquière, C.</creatorcontrib><creatorcontrib>Meneghesso, G.</creatorcontrib><creatorcontrib>Hoel, V.</creatorcontrib><creatorcontrib>Jacquet, J.-C.</creatorcontrib><creatorcontrib>Delage, S.</creatorcontrib><title>GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application</title><title>Journal of crystal growth</title><description>This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with these structures.
Some critical growth parameters, such as growth temperature, V/III ratio and nucleation layer at the GaN/SiC interface, have been investigated, and their impact on physical properties of these heterostructures is studied. Such optimisation of the growth conditions has led to GaAlN/GaN HEMT heterostructures which are successfully compared in terms of material quality to the standard HEMT heterostructures grown on bulk SiC substrates.
Their electrical characteristics, such as sheet carrier density (
N
s), mobility (
μ), pinch-off voltage (
V
p) or sheet resistance (
R
s), are very similar to those obtained on bulk SiC substrates and their crystallographic properties, assessed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM), seem to be in good agreement with the above-mentioned electrical characteristics.
First devices with 0.5
μm gate length, made on these specific composite wafers, exhibit very good microwave performances, with output power of 5
W/mm at 10
GHz, similar to those obtained on bulk SiC substrates, showing the promising capability of SiCopSiC composite substrates.</description><subject>A1. Defects</subject><subject>A3. Metalorganic vapour phase epitaxy</subject><subject>Applied sciences</subject><subject>B1. Nitrides</subject><subject>B2. Semiconducting III–V materials</subject><subject>B3. Field effect transistors</subject><subject>B3. Heterojunction semiconductor devices</subject><subject>B3. High electron mobility transistors</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Other materials</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Transistors</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVoIdttXiH4kkIP3oxk2bJvXZZ0N7BJD01OOQhZHidavJYryQl5-8o4yTUwzMDwzT_wEXJOYUWBFpeH1UG7V__o7IoBlKupsvyELGgpsjQHYF_IInaWAuPlKfnm_QEgXlJYkIetWne3l1t1m-yubu6SJwzorA9u1GF06JMY-9Intk_-mo0dYku0PQ7Wm4CJH-tIqhCx1ro5QA1DZ7QKxvbfyddWdR7P3uaS3P--utvs0v2f7fVmvU81BxHSthGgKeMVrZuC56zi0IhaYyvKIm9rwUssqEJa52XBCs5ZpmidiaoRWkybbEl-zrlPqpODM0flXqVVRu7WezntohUAAeUzjeyPmR2c_TeiD_JovMauUz3a0cssz0rBWRXBYgZ11OEdth_JFOTkXR7ku3c5eZdTxfMluXj7oLxWXetUr43_uGYUGK0YRO7XzGFU82zQSa8N9hob41AH2Vjz2av_A1-a8w</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>di Forte Poisson, M.-A.</creator><creator>Magis, M.</creator><creator>Tordjman, M.</creator><creator>Di Persio, J.</creator><creator>Langer, R.</creator><creator>Toth, L.</creator><creator>Pecz, B.</creator><creator>Guziewicz, M.</creator><creator>Thorpe, J.</creator><creator>Aubry, R.</creator><creator>Morvan, E.</creator><creator>Sarazin, N.</creator><creator>Gaquière, C.</creator><creator>Meneghesso, G.</creator><creator>Hoel, V.</creator><creator>Jacquet, J.-C.</creator><creator>Delage, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0003-4652-4742</orcidid></search><sort><creationdate>20081115</creationdate><title>GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application</title><author>di Forte Poisson, M.-A. ; Magis, M. ; Tordjman, M. ; Di Persio, J. ; Langer, R. ; Toth, L. ; Pecz, B. ; Guziewicz, M. ; Thorpe, J. ; Aubry, R. ; Morvan, E. ; Sarazin, N. ; Gaquière, C. ; Meneghesso, G. ; Hoel, V. ; Jacquet, J.-C. ; Delage, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>A1. Defects</topic><topic>A3. Metalorganic vapour phase epitaxy</topic><topic>Applied sciences</topic><topic>B1. Nitrides</topic><topic>B2. Semiconducting III–V materials</topic><topic>B3. Field effect transistors</topic><topic>B3. Heterojunction semiconductor devices</topic><topic>B3. High electron mobility transistors</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Other materials</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>di Forte Poisson, M.-A.</creatorcontrib><creatorcontrib>Magis, M.</creatorcontrib><creatorcontrib>Tordjman, M.</creatorcontrib><creatorcontrib>Di Persio, J.</creatorcontrib><creatorcontrib>Langer, R.</creatorcontrib><creatorcontrib>Toth, L.</creatorcontrib><creatorcontrib>Pecz, B.</creatorcontrib><creatorcontrib>Guziewicz, M.</creatorcontrib><creatorcontrib>Thorpe, J.</creatorcontrib><creatorcontrib>Aubry, R.</creatorcontrib><creatorcontrib>Morvan, E.</creatorcontrib><creatorcontrib>Sarazin, N.</creatorcontrib><creatorcontrib>Gaquière, C.</creatorcontrib><creatorcontrib>Meneghesso, G.</creatorcontrib><creatorcontrib>Hoel, V.</creatorcontrib><creatorcontrib>Jacquet, J.-C.</creatorcontrib><creatorcontrib>Delage, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>di Forte Poisson, M.-A.</au><au>Magis, M.</au><au>Tordjman, M.</au><au>Di Persio, J.</au><au>Langer, R.</au><au>Toth, L.</au><au>Pecz, B.</au><au>Guziewicz, M.</au><au>Thorpe, J.</au><au>Aubry, R.</au><au>Morvan, E.</au><au>Sarazin, N.</au><au>Gaquière, C.</au><au>Meneghesso, G.</au><au>Hoel, V.</au><au>Jacquet, J.-C.</au><au>Delage, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application</atitle><jtitle>Journal of crystal growth</jtitle><date>2008-11-15</date><risdate>2008</risdate><volume>310</volume><issue>23</issue><spage>5232</spage><epage>5236</epage><pages>5232-5236</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with these structures.
Some critical growth parameters, such as growth temperature, V/III ratio and nucleation layer at the GaN/SiC interface, have been investigated, and their impact on physical properties of these heterostructures is studied. Such optimisation of the growth conditions has led to GaAlN/GaN HEMT heterostructures which are successfully compared in terms of material quality to the standard HEMT heterostructures grown on bulk SiC substrates.
Their electrical characteristics, such as sheet carrier density (
N
s), mobility (
μ), pinch-off voltage (
V
p) or sheet resistance (
R
s), are very similar to those obtained on bulk SiC substrates and their crystallographic properties, assessed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM), seem to be in good agreement with the above-mentioned electrical characteristics.
First devices with 0.5
μm gate length, made on these specific composite wafers, exhibit very good microwave performances, with output power of 5
W/mm at 10
GHz, similar to those obtained on bulk SiC substrates, showing the promising capability of SiCopSiC composite substrates.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2008.08.035</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0003-4652-4742</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2008-11, Vol.310 (23), p.5232-5236 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00800708v1 |
source | Elsevier |
subjects | A1. Defects A3. Metalorganic vapour phase epitaxy Applied sciences B1. Nitrides B2. Semiconducting III–V materials B3. Field effect transistors B3. Heterojunction semiconductor devices B3. High electron mobility transistors Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science rheology Electronics Engineering Sciences Exact sciences and technology Materials science Methods of crystal growth physics of crystal growth Methods of deposition of films and coatings film growth and epitaxy Other materials Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Specific materials Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation Transistors |
title | GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GaAlN/GaN%20HEMT%20heterostructures%20grown%20on%20SiCopSiC%20composite%20substrates%20for%20HEMT%20application&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=di%20Forte%20Poisson,%20M.-A.&rft.date=2008-11-15&rft.volume=310&rft.issue=23&rft.spage=5232&rft.epage=5236&rft.pages=5232-5236&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2008.08.035&rft_dat=%3Cproquest_hal_p%3E35387429%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35387429&rft_id=info:pmid/&rfr_iscdi=true |