Loading…

GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application

This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with thes...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2008-11, Vol.310 (23), p.5232-5236
Main Authors: di Forte Poisson, M.-A., Magis, M., Tordjman, M., Di Persio, J., Langer, R., Toth, L., Pecz, B., Guziewicz, M., Thorpe, J., Aubry, R., Morvan, E., Sarazin, N., Gaquière, C., Meneghesso, G., Hoel, V., Jacquet, J.-C., Delage, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263
cites cdi_FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263
container_end_page 5236
container_issue 23
container_start_page 5232
container_title Journal of crystal growth
container_volume 310
creator di Forte Poisson, M.-A.
Magis, M.
Tordjman, M.
Di Persio, J.
Langer, R.
Toth, L.
Pecz, B.
Guziewicz, M.
Thorpe, J.
Aubry, R.
Morvan, E.
Sarazin, N.
Gaquière, C.
Meneghesso, G.
Hoel, V.
Jacquet, J.-C.
Delage, S.
description This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with these structures. Some critical growth parameters, such as growth temperature, V/III ratio and nucleation layer at the GaN/SiC interface, have been investigated, and their impact on physical properties of these heterostructures is studied. Such optimisation of the growth conditions has led to GaAlN/GaN HEMT heterostructures which are successfully compared in terms of material quality to the standard HEMT heterostructures grown on bulk SiC substrates. Their electrical characteristics, such as sheet carrier density ( N s), mobility ( μ), pinch-off voltage ( V p) or sheet resistance ( R s), are very similar to those obtained on bulk SiC substrates and their crystallographic properties, assessed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM), seem to be in good agreement with the above-mentioned electrical characteristics. First devices with 0.5 μm gate length, made on these specific composite wafers, exhibit very good microwave performances, with output power of 5 W/mm at 10 GHz, similar to those obtained on bulk SiC substrates, showing the promising capability of SiCopSiC composite substrates.
doi_str_mv 10.1016/j.jcrysgro.2008.08.035
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00800708v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024808007355</els_id><sourcerecordid>35387429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVoIdttXiH4kkIP3oxk2bJvXZZ0N7BJD01OOQhZHidavJYryQl5-8o4yTUwzMDwzT_wEXJOYUWBFpeH1UG7V__o7IoBlKupsvyELGgpsjQHYF_IInaWAuPlKfnm_QEgXlJYkIetWne3l1t1m-yubu6SJwzorA9u1GF06JMY-9Intk_-mo0dYku0PQ7Wm4CJH-tIqhCx1ro5QA1DZ7QKxvbfyddWdR7P3uaS3P--utvs0v2f7fVmvU81BxHSthGgKeMVrZuC56zi0IhaYyvKIm9rwUssqEJa52XBCs5ZpmidiaoRWkybbEl-zrlPqpODM0flXqVVRu7WezntohUAAeUzjeyPmR2c_TeiD_JovMauUz3a0cssz0rBWRXBYgZ11OEdth_JFOTkXR7ku3c5eZdTxfMluXj7oLxWXetUr43_uGYUGK0YRO7XzGFU82zQSa8N9hob41AH2Vjz2av_A1-a8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35387429</pqid></control><display><type>article</type><title>GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application</title><source>Elsevier</source><creator>di Forte Poisson, M.-A. ; Magis, M. ; Tordjman, M. ; Di Persio, J. ; Langer, R. ; Toth, L. ; Pecz, B. ; Guziewicz, M. ; Thorpe, J. ; Aubry, R. ; Morvan, E. ; Sarazin, N. ; Gaquière, C. ; Meneghesso, G. ; Hoel, V. ; Jacquet, J.-C. ; Delage, S.</creator><creatorcontrib>di Forte Poisson, M.-A. ; Magis, M. ; Tordjman, M. ; Di Persio, J. ; Langer, R. ; Toth, L. ; Pecz, B. ; Guziewicz, M. ; Thorpe, J. ; Aubry, R. ; Morvan, E. ; Sarazin, N. ; Gaquière, C. ; Meneghesso, G. ; Hoel, V. ; Jacquet, J.-C. ; Delage, S.</creatorcontrib><description>This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with these structures. Some critical growth parameters, such as growth temperature, V/III ratio and nucleation layer at the GaN/SiC interface, have been investigated, and their impact on physical properties of these heterostructures is studied. Such optimisation of the growth conditions has led to GaAlN/GaN HEMT heterostructures which are successfully compared in terms of material quality to the standard HEMT heterostructures grown on bulk SiC substrates. Their electrical characteristics, such as sheet carrier density ( N s), mobility ( μ), pinch-off voltage ( V p) or sheet resistance ( R s), are very similar to those obtained on bulk SiC substrates and their crystallographic properties, assessed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM), seem to be in good agreement with the above-mentioned electrical characteristics. First devices with 0.5 μm gate length, made on these specific composite wafers, exhibit very good microwave performances, with output power of 5 W/mm at 10 GHz, similar to those obtained on bulk SiC substrates, showing the promising capability of SiCopSiC composite substrates.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2008.08.035</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Defects ; A3. Metalorganic vapour phase epitaxy ; Applied sciences ; B1. Nitrides ; B2. Semiconducting III–V materials ; B3. Field effect transistors ; B3. Heterojunction semiconductor devices ; B3. High electron mobility transistors ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Engineering Sciences ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Other materials ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Transistors</subject><ispartof>Journal of crystal growth, 2008-11, Vol.310 (23), p.5232-5236</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263</citedby><cites>FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263</cites><orcidid>0000-0002-6715-4827 ; 0000-0003-3082-2489 ; 0000-0003-4652-4742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21021920$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00800708$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>di Forte Poisson, M.-A.</creatorcontrib><creatorcontrib>Magis, M.</creatorcontrib><creatorcontrib>Tordjman, M.</creatorcontrib><creatorcontrib>Di Persio, J.</creatorcontrib><creatorcontrib>Langer, R.</creatorcontrib><creatorcontrib>Toth, L.</creatorcontrib><creatorcontrib>Pecz, B.</creatorcontrib><creatorcontrib>Guziewicz, M.</creatorcontrib><creatorcontrib>Thorpe, J.</creatorcontrib><creatorcontrib>Aubry, R.</creatorcontrib><creatorcontrib>Morvan, E.</creatorcontrib><creatorcontrib>Sarazin, N.</creatorcontrib><creatorcontrib>Gaquière, C.</creatorcontrib><creatorcontrib>Meneghesso, G.</creatorcontrib><creatorcontrib>Hoel, V.</creatorcontrib><creatorcontrib>Jacquet, J.-C.</creatorcontrib><creatorcontrib>Delage, S.</creatorcontrib><title>GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application</title><title>Journal of crystal growth</title><description>This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with these structures. Some critical growth parameters, such as growth temperature, V/III ratio and nucleation layer at the GaN/SiC interface, have been investigated, and their impact on physical properties of these heterostructures is studied. Such optimisation of the growth conditions has led to GaAlN/GaN HEMT heterostructures which are successfully compared in terms of material quality to the standard HEMT heterostructures grown on bulk SiC substrates. Their electrical characteristics, such as sheet carrier density ( N s), mobility ( μ), pinch-off voltage ( V p) or sheet resistance ( R s), are very similar to those obtained on bulk SiC substrates and their crystallographic properties, assessed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM), seem to be in good agreement with the above-mentioned electrical characteristics. First devices with 0.5 μm gate length, made on these specific composite wafers, exhibit very good microwave performances, with output power of 5 W/mm at 10 GHz, similar to those obtained on bulk SiC substrates, showing the promising capability of SiCopSiC composite substrates.</description><subject>A1. Defects</subject><subject>A3. Metalorganic vapour phase epitaxy</subject><subject>Applied sciences</subject><subject>B1. Nitrides</subject><subject>B2. Semiconducting III–V materials</subject><subject>B3. Field effect transistors</subject><subject>B3. Heterojunction semiconductor devices</subject><subject>B3. High electron mobility transistors</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Other materials</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Transistors</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMFq3DAQhkVoIdttXiH4kkIP3oxk2bJvXZZ0N7BJD01OOQhZHidavJYryQl5-8o4yTUwzMDwzT_wEXJOYUWBFpeH1UG7V__o7IoBlKupsvyELGgpsjQHYF_IInaWAuPlKfnm_QEgXlJYkIetWne3l1t1m-yubu6SJwzorA9u1GF06JMY-9Intk_-mo0dYku0PQ7Wm4CJH-tIqhCx1ro5QA1DZ7QKxvbfyddWdR7P3uaS3P--utvs0v2f7fVmvU81BxHSthGgKeMVrZuC56zi0IhaYyvKIm9rwUssqEJa52XBCs5ZpmidiaoRWkybbEl-zrlPqpODM0flXqVVRu7WezntohUAAeUzjeyPmR2c_TeiD_JovMauUz3a0cssz0rBWRXBYgZ11OEdth_JFOTkXR7ku3c5eZdTxfMluXj7oLxWXetUr43_uGYUGK0YRO7XzGFU82zQSa8N9hob41AH2Vjz2av_A1-a8w</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>di Forte Poisson, M.-A.</creator><creator>Magis, M.</creator><creator>Tordjman, M.</creator><creator>Di Persio, J.</creator><creator>Langer, R.</creator><creator>Toth, L.</creator><creator>Pecz, B.</creator><creator>Guziewicz, M.</creator><creator>Thorpe, J.</creator><creator>Aubry, R.</creator><creator>Morvan, E.</creator><creator>Sarazin, N.</creator><creator>Gaquière, C.</creator><creator>Meneghesso, G.</creator><creator>Hoel, V.</creator><creator>Jacquet, J.-C.</creator><creator>Delage, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0003-4652-4742</orcidid></search><sort><creationdate>20081115</creationdate><title>GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application</title><author>di Forte Poisson, M.-A. ; Magis, M. ; Tordjman, M. ; Di Persio, J. ; Langer, R. ; Toth, L. ; Pecz, B. ; Guziewicz, M. ; Thorpe, J. ; Aubry, R. ; Morvan, E. ; Sarazin, N. ; Gaquière, C. ; Meneghesso, G. ; Hoel, V. ; Jacquet, J.-C. ; Delage, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>A1. Defects</topic><topic>A3. Metalorganic vapour phase epitaxy</topic><topic>Applied sciences</topic><topic>B1. Nitrides</topic><topic>B2. Semiconducting III–V materials</topic><topic>B3. Field effect transistors</topic><topic>B3. Heterojunction semiconductor devices</topic><topic>B3. High electron mobility transistors</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Other materials</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>di Forte Poisson, M.-A.</creatorcontrib><creatorcontrib>Magis, M.</creatorcontrib><creatorcontrib>Tordjman, M.</creatorcontrib><creatorcontrib>Di Persio, J.</creatorcontrib><creatorcontrib>Langer, R.</creatorcontrib><creatorcontrib>Toth, L.</creatorcontrib><creatorcontrib>Pecz, B.</creatorcontrib><creatorcontrib>Guziewicz, M.</creatorcontrib><creatorcontrib>Thorpe, J.</creatorcontrib><creatorcontrib>Aubry, R.</creatorcontrib><creatorcontrib>Morvan, E.</creatorcontrib><creatorcontrib>Sarazin, N.</creatorcontrib><creatorcontrib>Gaquière, C.</creatorcontrib><creatorcontrib>Meneghesso, G.</creatorcontrib><creatorcontrib>Hoel, V.</creatorcontrib><creatorcontrib>Jacquet, J.-C.</creatorcontrib><creatorcontrib>Delage, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>di Forte Poisson, M.-A.</au><au>Magis, M.</au><au>Tordjman, M.</au><au>Di Persio, J.</au><au>Langer, R.</au><au>Toth, L.</au><au>Pecz, B.</au><au>Guziewicz, M.</au><au>Thorpe, J.</au><au>Aubry, R.</au><au>Morvan, E.</au><au>Sarazin, N.</au><au>Gaquière, C.</au><au>Meneghesso, G.</au><au>Hoel, V.</au><au>Jacquet, J.-C.</au><au>Delage, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application</atitle><jtitle>Journal of crystal growth</jtitle><date>2008-11-15</date><risdate>2008</risdate><volume>310</volume><issue>23</issue><spage>5232</spage><epage>5236</epage><pages>5232-5236</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>This paper reports on low-pressure metalorganic vapour deposition (LP-MOCVD) growth optimisation of GaAlN/GaN heterostructures grown on SiCopSiC (silicon carbide-oxyde-polycrystalline silicon carbide) composite substrates for HEMT applications, and on the first device performances obtained with these structures. Some critical growth parameters, such as growth temperature, V/III ratio and nucleation layer at the GaN/SiC interface, have been investigated, and their impact on physical properties of these heterostructures is studied. Such optimisation of the growth conditions has led to GaAlN/GaN HEMT heterostructures which are successfully compared in terms of material quality to the standard HEMT heterostructures grown on bulk SiC substrates. Their electrical characteristics, such as sheet carrier density ( N s), mobility ( μ), pinch-off voltage ( V p) or sheet resistance ( R s), are very similar to those obtained on bulk SiC substrates and their crystallographic properties, assessed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM), seem to be in good agreement with the above-mentioned electrical characteristics. First devices with 0.5 μm gate length, made on these specific composite wafers, exhibit very good microwave performances, with output power of 5 W/mm at 10 GHz, similar to those obtained on bulk SiC substrates, showing the promising capability of SiCopSiC composite substrates.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2008.08.035</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0003-4652-4742</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2008-11, Vol.310 (23), p.5232-5236
issn 0022-0248
1873-5002
language eng
recordid cdi_hal_primary_oai_HAL_hal_00800708v1
source Elsevier
subjects A1. Defects
A3. Metalorganic vapour phase epitaxy
Applied sciences
B1. Nitrides
B2. Semiconducting III–V materials
B3. Field effect transistors
B3. Heterojunction semiconductor devices
B3. High electron mobility transistors
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Cross-disciplinary physics: materials science
rheology
Electronics
Engineering Sciences
Exact sciences and technology
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Other materials
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Specific materials
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
Transistors
title GaAlN/GaN HEMT heterostructures grown on SiCopSiC composite substrates for HEMT application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GaAlN/GaN%20HEMT%20heterostructures%20grown%20on%20SiCopSiC%20composite%20substrates%20for%20HEMT%20application&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=di%20Forte%20Poisson,%20M.-A.&rft.date=2008-11-15&rft.volume=310&rft.issue=23&rft.spage=5232&rft.epage=5236&rft.pages=5232-5236&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2008.08.035&rft_dat=%3Cproquest_hal_p%3E35387429%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-fd70c12491bd6452940d7bcef7865fb748e61ae1b586264423a1b379d7c786263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35387429&rft_id=info:pmid/&rfr_iscdi=true