Loading…

Effective elliptic fitting for iris normalization

► Increase in recognition performance achieved with an effective contour fitting scheme. ► Elliptic contour fitting based on Active Contours formulation is described. ► Proposed contour fitting method is not dependent of the segmentation algorithm. ► Results are confirmed on several public databases...

Full description

Saved in:
Bibliographic Details
Published in:Computer vision and image understanding 2013-06, Vol.117 (6), p.732-745
Main Authors: Lefevre, Thierry, Dorizzi, Bernadette, Garcia-Salicetti, Sonia, Lemperiere, Nadege, Belardi, Stephane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-583785eeea9313c6845b36a986ce7c0c538515c27feb6c7787adde51cf9cb0633
cites cdi_FETCH-LOGICAL-c463t-583785eeea9313c6845b36a986ce7c0c538515c27feb6c7787adde51cf9cb0633
container_end_page 745
container_issue 6
container_start_page 732
container_title Computer vision and image understanding
container_volume 117
creator Lefevre, Thierry
Dorizzi, Bernadette
Garcia-Salicetti, Sonia
Lemperiere, Nadege
Belardi, Stephane
description ► Increase in recognition performance achieved with an effective contour fitting scheme. ► Elliptic contour fitting based on Active Contours formulation is described. ► Proposed contour fitting method is not dependent of the segmentation algorithm. ► Results are confirmed on several public databases. Having an accurate parametric description of the iris borders is a critical issue for iris recognition systems based on Daugman’s rubber sheet normalization. Many methods in the literature use very powerful and effective schemes for iris segmentation but often apply a simple estimator procedure, such as the Hough Transform or Least Square Fitting to get this parametric description. Those fitting methods are very sensitive to the segmentation quality as inaccuracies will provoke large errors in the resulting contour. In this article we propose an effective way to find optimal parameters for ellipses in order to proceed the normalization. Our method is based on a variational formulation of the well-known Active Contour techniques leading to a compact formulation for elliptic contours. We show improvements compared to an Elliptic Hough Transform and a Direct Least Square Fitting on the following databases: ICE2005, ND-Iris and Casia-Lamp. We also demonstrate that our scheme can be paired effectively with different segmentation algorithms. Significant improvements of the recognition results were obtained when adding our algorithm after the segmentation stage of VASIR and OSIRIS, two open source packages for iris recognition.
doi_str_mv 10.1016/j.cviu.2013.01.005
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00812580v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S107731421300012X</els_id><sourcerecordid>1349453523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-583785eeea9313c6845b36a986ce7c0c538515c27feb6c7787adde51cf9cb0633</originalsourceid><addsrcrecordid>eNp9kMFq3EAMhk1JoUnaF-jJl0BzsCvNeGZs6CWEtFtY6KWF3oZZrabV4rU3M96F5ulrsyHHnCTEp1_oK4qPCDUC2s-7mk5yrBWgrgFrAPOmuETooFLa_L5YeucqjY16V1zlvANAbDq8LPAhRqZJTlxy38thEiqjTJMMf8o4plKS5HIY0z708hQmGYf3xdsY-swfnut18evrw8_7VbX-8e37_d26osbqqTKtdq1h5tBp1GTbxmy0DV1riR0BGd0aNKRc5I0l51oXtls2SLGjDVitr4vbc-7f0PtDkn1I__wYxK_u1n6ZAbSoTAsnnNlPZ_aQxscj58nvJdP8UBh4PGaPuukao41aYtUZpTTmnDi-ZCP4xaXf-cWlX1x6wPmMmZdunvNDptDHFAaS_LKpnLaNVXbmvpw5nsWchJPPJDwQbyXNlv12lNfO_AfhjIif</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349453523</pqid></control><display><type>article</type><title>Effective elliptic fitting for iris normalization</title><source>ScienceDirect Freedom Collection</source><creator>Lefevre, Thierry ; Dorizzi, Bernadette ; Garcia-Salicetti, Sonia ; Lemperiere, Nadege ; Belardi, Stephane</creator><creatorcontrib>Lefevre, Thierry ; Dorizzi, Bernadette ; Garcia-Salicetti, Sonia ; Lemperiere, Nadege ; Belardi, Stephane</creatorcontrib><description>► Increase in recognition performance achieved with an effective contour fitting scheme. ► Elliptic contour fitting based on Active Contours formulation is described. ► Proposed contour fitting method is not dependent of the segmentation algorithm. ► Results are confirmed on several public databases. Having an accurate parametric description of the iris borders is a critical issue for iris recognition systems based on Daugman’s rubber sheet normalization. Many methods in the literature use very powerful and effective schemes for iris segmentation but often apply a simple estimator procedure, such as the Hough Transform or Least Square Fitting to get this parametric description. Those fitting methods are very sensitive to the segmentation quality as inaccuracies will provoke large errors in the resulting contour. In this article we propose an effective way to find optimal parameters for ellipses in order to proceed the normalization. Our method is based on a variational formulation of the well-known Active Contour techniques leading to a compact formulation for elliptic contours. We show improvements compared to an Elliptic Hough Transform and a Direct Least Square Fitting on the following databases: ICE2005, ND-Iris and Casia-Lamp. We also demonstrate that our scheme can be paired effectively with different segmentation algorithms. Significant improvements of the recognition results were obtained when adding our algorithm after the segmentation stage of VASIR and OSIRIS, two open source packages for iris recognition.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2013.01.005</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Active Contours ; Algorithms ; Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Ellipse ; Exact sciences and technology ; Fittings ; Hough transforms ; Iris recognition ; Least squares method ; Memory and file management (including protection and security) ; Memory organisation. Data processing ; Normalization ; Pattern recognition. Digital image processing. Computational geometry ; Recognition ; Segmentation ; Shape ; Signal and Image Processing ; Software ; Variational optimization</subject><ispartof>Computer vision and image understanding, 2013-06, Vol.117 (6), p.732-745</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-583785eeea9313c6845b36a986ce7c0c538515c27feb6c7787adde51cf9cb0633</citedby><cites>FETCH-LOGICAL-c463t-583785eeea9313c6845b36a986ce7c0c538515c27feb6c7787adde51cf9cb0633</cites><orcidid>0000-0002-7502-1418 ; 0000-0001-5257-8216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27364626$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00812580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefevre, Thierry</creatorcontrib><creatorcontrib>Dorizzi, Bernadette</creatorcontrib><creatorcontrib>Garcia-Salicetti, Sonia</creatorcontrib><creatorcontrib>Lemperiere, Nadege</creatorcontrib><creatorcontrib>Belardi, Stephane</creatorcontrib><title>Effective elliptic fitting for iris normalization</title><title>Computer vision and image understanding</title><description>► Increase in recognition performance achieved with an effective contour fitting scheme. ► Elliptic contour fitting based on Active Contours formulation is described. ► Proposed contour fitting method is not dependent of the segmentation algorithm. ► Results are confirmed on several public databases. Having an accurate parametric description of the iris borders is a critical issue for iris recognition systems based on Daugman’s rubber sheet normalization. Many methods in the literature use very powerful and effective schemes for iris segmentation but often apply a simple estimator procedure, such as the Hough Transform or Least Square Fitting to get this parametric description. Those fitting methods are very sensitive to the segmentation quality as inaccuracies will provoke large errors in the resulting contour. In this article we propose an effective way to find optimal parameters for ellipses in order to proceed the normalization. Our method is based on a variational formulation of the well-known Active Contour techniques leading to a compact formulation for elliptic contours. We show improvements compared to an Elliptic Hough Transform and a Direct Least Square Fitting on the following databases: ICE2005, ND-Iris and Casia-Lamp. We also demonstrate that our scheme can be paired effectively with different segmentation algorithms. Significant improvements of the recognition results were obtained when adding our algorithm after the segmentation stage of VASIR and OSIRIS, two open source packages for iris recognition.</description><subject>Active Contours</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Ellipse</subject><subject>Exact sciences and technology</subject><subject>Fittings</subject><subject>Hough transforms</subject><subject>Iris recognition</subject><subject>Least squares method</subject><subject>Memory and file management (including protection and security)</subject><subject>Memory organisation. Data processing</subject><subject>Normalization</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Recognition</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Signal and Image Processing</subject><subject>Software</subject><subject>Variational optimization</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3EAMhk1JoUnaF-jJl0BzsCvNeGZs6CWEtFtY6KWF3oZZrabV4rU3M96F5ulrsyHHnCTEp1_oK4qPCDUC2s-7mk5yrBWgrgFrAPOmuETooFLa_L5YeucqjY16V1zlvANAbDq8LPAhRqZJTlxy38thEiqjTJMMf8o4plKS5HIY0z708hQmGYf3xdsY-swfnut18evrw8_7VbX-8e37_d26osbqqTKtdq1h5tBp1GTbxmy0DV1riR0BGd0aNKRc5I0l51oXtls2SLGjDVitr4vbc-7f0PtDkn1I__wYxK_u1n6ZAbSoTAsnnNlPZ_aQxscj58nvJdP8UBh4PGaPuukao41aYtUZpTTmnDi-ZCP4xaXf-cWlX1x6wPmMmZdunvNDptDHFAaS_LKpnLaNVXbmvpw5nsWchJPPJDwQbyXNlv12lNfO_AfhjIif</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Lefevre, Thierry</creator><creator>Dorizzi, Bernadette</creator><creator>Garcia-Salicetti, Sonia</creator><creator>Lemperiere, Nadege</creator><creator>Belardi, Stephane</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7502-1418</orcidid><orcidid>https://orcid.org/0000-0001-5257-8216</orcidid></search><sort><creationdate>20130601</creationdate><title>Effective elliptic fitting for iris normalization</title><author>Lefevre, Thierry ; Dorizzi, Bernadette ; Garcia-Salicetti, Sonia ; Lemperiere, Nadege ; Belardi, Stephane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-583785eeea9313c6845b36a986ce7c0c538515c27feb6c7787adde51cf9cb0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active Contours</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Ellipse</topic><topic>Exact sciences and technology</topic><topic>Fittings</topic><topic>Hough transforms</topic><topic>Iris recognition</topic><topic>Least squares method</topic><topic>Memory and file management (including protection and security)</topic><topic>Memory organisation. Data processing</topic><topic>Normalization</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Recognition</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Signal and Image Processing</topic><topic>Software</topic><topic>Variational optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefevre, Thierry</creatorcontrib><creatorcontrib>Dorizzi, Bernadette</creatorcontrib><creatorcontrib>Garcia-Salicetti, Sonia</creatorcontrib><creatorcontrib>Lemperiere, Nadege</creatorcontrib><creatorcontrib>Belardi, Stephane</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefevre, Thierry</au><au>Dorizzi, Bernadette</au><au>Garcia-Salicetti, Sonia</au><au>Lemperiere, Nadege</au><au>Belardi, Stephane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective elliptic fitting for iris normalization</atitle><jtitle>Computer vision and image understanding</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>117</volume><issue>6</issue><spage>732</spage><epage>745</epage><pages>732-745</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>► Increase in recognition performance achieved with an effective contour fitting scheme. ► Elliptic contour fitting based on Active Contours formulation is described. ► Proposed contour fitting method is not dependent of the segmentation algorithm. ► Results are confirmed on several public databases. Having an accurate parametric description of the iris borders is a critical issue for iris recognition systems based on Daugman’s rubber sheet normalization. Many methods in the literature use very powerful and effective schemes for iris segmentation but often apply a simple estimator procedure, such as the Hough Transform or Least Square Fitting to get this parametric description. Those fitting methods are very sensitive to the segmentation quality as inaccuracies will provoke large errors in the resulting contour. In this article we propose an effective way to find optimal parameters for ellipses in order to proceed the normalization. Our method is based on a variational formulation of the well-known Active Contour techniques leading to a compact formulation for elliptic contours. We show improvements compared to an Elliptic Hough Transform and a Direct Least Square Fitting on the following databases: ICE2005, ND-Iris and Casia-Lamp. We also demonstrate that our scheme can be paired effectively with different segmentation algorithms. Significant improvements of the recognition results were obtained when adding our algorithm after the segmentation stage of VASIR and OSIRIS, two open source packages for iris recognition.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2013.01.005</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7502-1418</orcidid><orcidid>https://orcid.org/0000-0001-5257-8216</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2013-06, Vol.117 (6), p.732-745
issn 1077-3142
1090-235X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00812580v1
source ScienceDirect Freedom Collection
subjects Active Contours
Algorithms
Applied sciences
Artificial intelligence
Computer Science
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Ellipse
Exact sciences and technology
Fittings
Hough transforms
Iris recognition
Least squares method
Memory and file management (including protection and security)
Memory organisation. Data processing
Normalization
Pattern recognition. Digital image processing. Computational geometry
Recognition
Segmentation
Shape
Signal and Image Processing
Software
Variational optimization
title Effective elliptic fitting for iris normalization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20elliptic%20fitting%20for%20iris%20normalization&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Lefevre,%20Thierry&rft.date=2013-06-01&rft.volume=117&rft.issue=6&rft.spage=732&rft.epage=745&rft.pages=732-745&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1016/j.cviu.2013.01.005&rft_dat=%3Cproquest_hal_p%3E1349453523%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-583785eeea9313c6845b36a986ce7c0c538515c27feb6c7787adde51cf9cb0633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349453523&rft_id=info:pmid/&rfr_iscdi=true